
The material in this video is subject to the copyright of the owners of the material and is being provided for educational purposes under
rules of fair use for registered students in this course only. No additional copies of the copyrighted work may be made or distributed.

EN.601.422 / EN.601.622

Software Testing & Debugging

2

Plan for Today

►Why “Software Testing”?

► Logistics

3

Software is everywhere

4

Do you see any bugs?

public class NumFinder {
 private int smallest = Integer.MAX_VALUE;
 private int largest = Integer.MIN_VALUE;

 public void find(int[] nums) {
 for(int n : nums) {
 if (n < smallest)
 smallest = n;
 else if (n > largest)
 largest = n;
 }
 }
 // getters for smallest and largest
}

5

Terminology

► Fault: a static defect in the software

► Error: An incorrect internal state

► Failure: External incorrect behavior with respect to the
requirements or expected behavior

►Bug: an informal term used in place of any of the above

►Debugging: Given a failure, find/fix the fault

6

Fault and Failure Analogy

►A patient gives a doctor a list of symptoms
❖ Failures

►The doctor tries to diagnose the root cause, the ailment
❖ Fault

►The doctor may look for anomalous internal conditions
(high blood pressure, irregular heartbeat, bacteria in the
blood stream)
❖ Errors

7

Fault vs Error vs Failure

public static int numZero (int [] arr)

{ // Effects: If arr is null throw NullPointerException

 // else return the number of occurrences of 0 in arr

 int count = 0;

 for (int i = 1; i < arr.length; i++)

 {

 if (arr[i] == 0)

 count++;

 }

 return count;

}

Fault: i should start from 0 not 1 Test 1
[2, 7, 0]

Expected: 1
Actual: 1Error: i is 1, not 0, on

the first iteration
Failure: None

Test 2
[0, 2, 7]

Expected: 1
Actual: 0Error: i is 1, not 0, on

The error propagates to count

Failure: count is 0 at the end

8

First Ever Bug

Grace Hopper found a moth stuck between the relays on the Harvard

Mark II computer she was working on

9

Mars Climate Orbiter Loss

► https://en.wikipedia.org/wiki/Mars_Climate_Orbiter

https://en.wikipedia.org/wiki/Mars_Climate_Orbiter

10

Therac-25 Radiation Therapy Machine

► Therac-25: the killer machine!
❖ race conditions in the codebase led to excessive radiations and death of

three patients!

11

Ariane 5 Rocket Explosion on June 4, 1996

https://www.youtube.com/watch?v=PK_yguLapgA

https://www.youtube.com/watch?v=PK_yguLapgA

12

Ariane 5 Rocket Explosion on June 4, 1996

https://www.youtube.com/watch?v=PK_yguLapgA

►Cause: a 64-bit floating-point number relating to the horizontal
velocity of the rocket with respect to the platform was converted to
a 16-bit signed integer causing a data overflow.

► Estimated Cost: a decade of development costing $7 billion

https://www.youtube.com/watch?v=PK_yguLapgA

13

Northeast Blackout of 2003

► https://en.wikipedia.org/wiki/Northeast_blackout_of_2003

► The outage affected about 10 million people in Canada and about
40 million in eight U.S. states.

https://en.wikipedia.org/wiki/Northeast_blackout_of_2003

14

Northeast Blackout of 2003

►Cause: software bug in the alarm system in the control room
of FirstEnergy, an Akron Ohio–based company, which rendered
operators unaware of the need to redistribute load after
overloaded transmission lines drooped into foliage. What should
have been a manageable local blackout cascaded into collapse of
the entire Northeast region.

► Estimated Cost: contributing to 11 deaths and about $6 billion USD

15

Toyota Prius ABS Brake Software Recall

► https://www.usnews.com/news/articles/2014/02/12/toyota-to-recall-19-
million-prius-cars-due-to-software-problem

https://www.usnews.com/news/articles/2014/02/12/toyota-to-recall-19-million-prius-cars-due-to-software-problem
https://www.usnews.com/news/articles/2014/02/12/toyota-to-recall-19-million-prius-cars-due-to-software-problem

16

Korean Education Software Fault

► http://koreajoongangdaily.joins.com/news/article/article.aspx?aid=
2939367

► In 2011, Samsung Electronics' Education info system miscalculated
grades of about 29000 middle and high students, affecting the
college admission process leading to a government investigation

http://koreajoongangdaily.joins.com/news/article/article.aspx?aid=2939367
http://koreajoongangdaily.joins.com/news/article/article.aspx?aid=2939367

17

Robinhood Bugs

18

Importance of Software Testing

►A 2002 report by NIST:
❖ Defective software costs US economy $59.5 billion per year
❖ Improved testing could reduce the cost by one third

►Blumenstyk reported web application failures cost:
❖ $150K in media companies
❖ $2.4 million per hour in credit card sales
❖ $6.5 million per hour in financial service market

https://www.nist.gov/sites/default/files/documents/director/planning/report02-3.pdf
Blumenstyk, Web application development – bridging the gap between QA and development, www.stickyminds.com, 2006

https://www.nist.gov/sites/default/files/documents/director/planning/report02-3.pdf
http://www.stickyminds.com/

19

Cost of Bugs!

“Most defects end up costing
more than it would have cost
to prevent them. Defects are
expensive when they occur,
both the direct costs of fixing
the defects and the indirect
costs because of damaged
relationships, lost business,
and lost development
time.” —Kent Beck, Extreme
Programming Explained

20

What Do All These Mean?

Software Testing is a crucial activity

21

The Goal of Software Testing

Why do we test software?

Ensuring that the software works as expected

22

The Goal of Software Testing

Why do we test software?

Ensuring that the software works as expected

23

The Goal of Software Testing

Why do we test software?

To produce high quality software by revealing
and repairing as many faults as possible

24

The Goal of Software Testing

Why do we test software?

“Software testing should be used to show the
presence of bugs, not their absence”

– Edward W. Dijkstra

25

The Goal of Software Testing

► Issue with the “common sense” goal:

show correctness ➔ impossible/impractical to achieve, due to
(potentially) infinite number of possible test input values

26

Psychology of Software Testing

► Psychological issue of the “common sense” goal:

show correctness ➔ will be inclined (subconsciously) towards your
goal ➔ write tests that work fine rather than cause failures

27

Psychology of Software Testing

►A fundamental issue of the “common sense” goal:

show correctness ➔ what does “correctness” really mean?

28

The Goal of Software Testing

show correctness ➔ impossible to achieve, due to (potentially)
infinite number of possible test input values

exhaustive path testing, via adequate test input values, might
seem to be the answer

(i.e., executing all possible paths of control flow graph)

30

The Goal of Software Testing

►Why exhaustive path testing is not the answer either:
❖ Even if we cover all the possible execution paths, the program

might be loaded with faults:
● no guarantee the program complies with its specifications
●missing paths
● data sensitivity:
 if (a - b < c)
 System.out.println (“a distance from b is less than c”);

• Test 1: [a=4, b=3, c=2] executes inside the “if” but does NOT reveal the
fault; only a test case like Test 2: [a=-2, b=2, c = 2] would!

• Fix: must calculate absolute distance between a and b

31

Psychology of Software Testing

► Implications of the “correct” perspective:
❖ testing is difficult
❖ switch successful test vs unsuccessful test terminology
● to our thinking, a successful test should reveal a fault

❖ A program that does everything it is supposed to do is not
necessarily correct
●might do extra unnecessary things also

32

Psychology of Software Testing

Testing is a destructive (even sadistic!)
process

A major shift in our mentality!

33

Psychology of Software Testing

Eventually we want to increase the confidence about the software

This is best achieved by diligent
search for faults

34

Software Testing is hard!

►Pesticide paradox: "Every strategy you use to prevent or find bugs
leaves a residue of subtler bugs against which those strategies are
ineffectual.“
❖ e.g., using unit testing only

► Testing is context-dependent:
❖ Mobile vs. web vs. desktop

►Absence-of-errors fallacy: Testing software thoroughly but for
wrong requirements!

https://www.informit.com/articles/article.aspx?p=19796&seqNum=6#:~:text=The%20Pesticide%20Paradox.%20In%201990%2C%20Boris%20Beizer%2C%20in,up%20resistance%20and%20the%20pesticide%20no%20longer%20works.
https://www.oodlestechnologies.com/blogs/Understanding-Absence-of-Error-fallacy-in-Software-Testing/

35

Verification & Validation

►Verification: determining whether the software fulfills the
requirements. In other words, whether the software meets its
specifications or not.

►Validation: determining whether the produced meets the intended
usage (i.e., comprehensively and exclusively captures user needs)

36

Verification vs Validation

37

Verification & Validation

►Verification:
❖ more technical
❖ does not reveal flaws in the requirements/specifications

►Validation:
❖ depends on the domain knowledge
❖ exposes flaws in the specification and requirement

deficiencies/discrepancies

38

Recommended Texts

The Art of Software
Testing

3rd Edition by Glenford Myers et al.

Introduction to
Software Testing

2nd Edition by Paul Ammann and Jeff Offutt

Why Programs Fail
2nd Edition by Andreas Zeller

Effective Software Testing
By Maurício Aniche

39

Grading Breakdown

Grading Breakdown Grading Scale
5% Participation (attendances tracked!) [100%, 99%]; (99%, 93%]; (93%, 90%] A+; A; A-

0% In-class exercises (90%, 88%]; (88%, 83%]; (83%, 80%] B+; B; B-

55% 4-5 homework assignments (80%, 78%]; (78%, 73%]; (73%, 70%] C+; C; C-

20% Comprehensive test (70%, 68%]; (68%, 63%]; (63%, 60%] D+; D; D-

20% Team-based final project (60%, 0%] F

40

Homework

► 5-6 Homework assignments

► Solo work

► Submit by the specified deadline
❖ *** a budget of 4 late days***

► Either written (pen-paper), hands-on (programming, automated
tools etc.), or combo

41

Semester Project

► Hands-on
❖ Conduct a systematic and thorough testing and/or debugging on an

existing piece of software

► Teamwork (2-3 people)

► Possible deliverables:
❖ Testing artifacts if any
❖ REQURIRED The SUT
❖ REQUIRED Code, scripts, configuration files, tools etc.
❖ REQUIRED A thorough final report
❖ REQUIRED A step-by-step instruction document explaining how to

setup and run the tests
❖ REQUIRED A concise in-class presentation

42

Comprehensive test

►A closed-book, comprehensive test that covers all the material
taught in the class over the semester. It tests your knowledge and
understanding of the concepts, theories and methodologies
discussed.

► It is more geared to test your understanding of the concepts rather
than memorization.

	Slide 1
	Slide 2: Plan for Today
	Slide 3: Software is everywhere
	Slide 4: Do you see any bugs?
	Slide 5: Terminology
	Slide 6: Fault and Failure Analogy
	Slide 7: Fault vs Error vs Failure
	Slide 8: First Ever Bug
	Slide 9: Mars Climate Orbiter Loss
	Slide 10: Therac-25 Radiation Therapy Machine
	Slide 11: Ariane 5 Rocket Explosion on June 4, 1996
	Slide 12: Ariane 5 Rocket Explosion on June 4, 1996
	Slide 13: Northeast Blackout of 2003
	Slide 14: Northeast Blackout of 2003
	Slide 15: Toyota Prius ABS Brake Software Recall
	Slide 16: Korean Education Software Fault
	Slide 17: Robinhood Bugs
	Slide 18: Importance of Software Testing
	Slide 19: Cost of Bugs!
	Slide 20: What Do All These Mean?
	Slide 21: The Goal of Software Testing
	Slide 22: The Goal of Software Testing
	Slide 23: The Goal of Software Testing
	Slide 24: The Goal of Software Testing
	Slide 25: The Goal of Software Testing
	Slide 26: Psychology of Software Testing
	Slide 27: Psychology of Software Testing
	Slide 28: The Goal of Software Testing
	Slide 30: The Goal of Software Testing
	Slide 31: Psychology of Software Testing
	Slide 32: Psychology of Software Testing
	Slide 33: Psychology of Software Testing
	Slide 34: Software Testing is hard!
	Slide 35: Verification & Validation
	Slide 36: Verification vs Validation
	Slide 37: Verification & Validation
	Slide 38: Recommended Texts
	Slide 39: Grading Breakdown
	Slide 40: Homework
	Slide 41: Semester Project
	Slide 42: Comprehensive test

