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Software Testing & Debugging
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Plan for Today

►Why “Software Testing”?

► Logistics
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Software is everywhere
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Do you see any bugs?

public class NumFinder {
 private int smallest = Integer.MAX_VALUE;
 private int largest = Integer.MIN_VALUE;

  public void find(int[] nums) {
    for(int n : nums) {
      if (n < smallest) 
         smallest = n;
      else if (n > largest)
         largest = n;
    }
  }
  // getters for smallest and largest
}



5

Terminology

► Fault: a static defect in the software

► Error: An incorrect internal state

► Failure: External incorrect behavior with respect to the 
requirements or expected behavior

►Bug: an informal term used in place of any of the above

►Debugging: Given a failure, find/fix the fault
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Fault and Failure Analogy

►A patient gives a doctor a list of symptoms
❖ Failures

►The doctor tries to diagnose the root cause, the ailment
❖ Fault

►The doctor may look for anomalous internal conditions 
(high blood pressure, irregular heartbeat, bacteria in the 
blood stream)
❖ Errors



7

Fault vs Error vs Failure

public static int numZero (int [ ] arr)

{  // Effects: If arr is null throw NullPointerException

   // else return the number of occurrences of 0 in arr

   int count = 0;

  for (int i = 1; i < arr.length; i++)

   {

      if (arr[i] == 0)

           count++;

   }

  return count;

}

Fault: i should start from 0 not 1 Test 1
[ 2, 7, 0 ]

Expected: 1
Actual: 1Error: i is 1, not 0, on 

the first iteration
Failure: None

Test 2
[ 0, 2, 7 ]

Expected: 1
Actual: 0Error: i is 1, not 0, on 

The error propagates to count

Failure: count is 0 at the end
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First Ever Bug

Grace Hopper found a moth stuck between the relays on the Harvard 

Mark II computer she was working on
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Mars Climate Orbiter Loss

► https://en.wikipedia.org/wiki/Mars_Climate_Orbiter

https://en.wikipedia.org/wiki/Mars_Climate_Orbiter
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Therac-25 Radiation Therapy Machine

► Therac-25: the killer machine!
❖ race conditions in the codebase led to excessive radiations and death of 

three patients!
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Ariane 5 Rocket Explosion on June 4, 1996

https://www.youtube.com/watch?v=PK_yguLapgA

https://www.youtube.com/watch?v=PK_yguLapgA
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Ariane 5 Rocket Explosion on June 4, 1996

https://www.youtube.com/watch?v=PK_yguLapgA

►Cause: a 64-bit floating-point number relating to the horizontal 
velocity of the rocket with respect to the platform was converted to 
a 16-bit signed integer causing a data overflow.

► Estimated Cost: a decade of development costing $7 billion

https://www.youtube.com/watch?v=PK_yguLapgA
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Northeast Blackout of 2003

► https://en.wikipedia.org/wiki/Northeast_blackout_of_2003

► The outage affected about 10 million people in Canada and about 
40 million in eight U.S. states.

https://en.wikipedia.org/wiki/Northeast_blackout_of_2003
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Northeast Blackout of 2003

►Cause: software bug in the alarm system in the control room 
of FirstEnergy, an Akron Ohio–based company, which rendered 
operators unaware of the need to redistribute load after 
overloaded transmission lines drooped into foliage. What should 
have been a manageable local blackout cascaded into collapse of 
the entire Northeast region.

► Estimated Cost: contributing to 11 deaths and about $6 billion USD
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Toyota Prius ABS Brake Software Recall

► https://www.usnews.com/news/articles/2014/02/12/toyota-to-recall-19-
million-prius-cars-due-to-software-problem

https://www.usnews.com/news/articles/2014/02/12/toyota-to-recall-19-million-prius-cars-due-to-software-problem
https://www.usnews.com/news/articles/2014/02/12/toyota-to-recall-19-million-prius-cars-due-to-software-problem
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Korean Education Software Fault

► http://koreajoongangdaily.joins.com/news/article/article.aspx?aid=
2939367

► In 2011, Samsung Electronics' Education info system miscalculated 
grades of about 29000 middle and high students, affecting the 
college admission process leading to a government investigation

http://koreajoongangdaily.joins.com/news/article/article.aspx?aid=2939367
http://koreajoongangdaily.joins.com/news/article/article.aspx?aid=2939367


17

Robinhood Bugs



18

Importance of Software Testing

►A 2002 report by NIST:
❖ Defective software costs US economy $59.5 billion per year
❖ Improved testing could reduce the cost by one third

►Blumenstyk reported web application failures cost:
❖ $150K in media companies
❖ $2.4 million per hour in credit card sales
❖ $6.5 million per hour in financial service market

https://www.nist.gov/sites/default/files/documents/director/planning/report02-3.pdf
Blumenstyk, Web application development – bridging the gap between QA and development, www.stickyminds.com, 2006

https://www.nist.gov/sites/default/files/documents/director/planning/report02-3.pdf
http://www.stickyminds.com/
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Cost of Bugs!

“Most defects end up costing 
more than it would have cost 
to prevent them. Defects are 
expensive when they occur, 
both the direct costs of fixing 
the defects and the indirect 
costs because of damaged 
relationships, lost business, 
and lost development 
time.” —Kent Beck, Extreme 
Programming Explained
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What Do All These Mean?

Software Testing is a crucial activity
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The Goal of Software Testing

Why do we test software?

Ensuring that the software works as expected
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The Goal of Software Testing

Why do we test software?

Ensuring that the software works as expected



23

The Goal of Software Testing

Why do we test software?

To produce high quality software by revealing 
and repairing as many faults as possible
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The Goal of Software Testing

Why do we test software?

“Software testing should be used to show the 
presence of bugs, not their absence” 

– Edward W. Dijkstra
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The Goal of Software Testing

► Issue with the “common sense” goal:

show correctness ➔ impossible/impractical to achieve, due to 
(potentially) infinite number of possible test input values 
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Psychology of Software Testing

► Psychological issue of the “common sense” goal:

show correctness ➔ will be inclined (subconsciously) towards your 
goal ➔ write tests that work fine rather than cause failures
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Psychology of Software Testing

►A fundamental issue of the “common sense” goal:

show correctness ➔ what does “correctness” really mean?
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The Goal of Software Testing

show correctness ➔ impossible to achieve, due to (potentially) 
infinite number of possible test input values 

exhaustive path testing, via adequate test input values, might 
seem to be the answer

(i.e., executing all possible paths of control flow graph)
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The Goal of Software Testing

►Why exhaustive path testing is not the answer either:
❖ Even if we cover all the possible execution paths, the program 

might be loaded with faults:
● no guarantee the program complies with its specifications
●missing paths
● data sensitivity:
          if (a - b < c) 
     System.out.println (“a distance from b is less than c”);

• Test 1: [a=4, b=3, c=2] executes inside the “if” but does NOT reveal the 
fault; only a test case like Test 2: [a=-2, b=2, c = 2] would!

• Fix: must calculate absolute distance between a and b
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Psychology of Software Testing

► Implications of the “correct” perspective:
❖ testing is difficult
❖ switch successful test vs unsuccessful test terminology
● to our thinking, a successful test should reveal a fault

❖ A program that does everything it is supposed to do is not 
necessarily correct
●might do extra unnecessary things also
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Psychology of Software Testing

Testing is a destructive (even sadistic!) 
process

A major shift in our mentality!
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Psychology of Software Testing

Eventually we want to increase the confidence about the software

This is best achieved by diligent 
search for faults
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Software Testing is hard!

►Pesticide paradox: "Every strategy you use to prevent or find bugs 
leaves a residue of subtler bugs against which those strategies are 
ineffectual.“
❖ e.g., using unit testing only

► Testing is context-dependent:
❖ Mobile vs. web vs. desktop

►Absence-of-errors fallacy: Testing software thoroughly but for 
wrong requirements!

https://www.informit.com/articles/article.aspx?p=19796&seqNum=6#:~:text=The%20Pesticide%20Paradox.%20In%201990%2C%20Boris%20Beizer%2C%20in,up%20resistance%20and%20the%20pesticide%20no%20longer%20works.
https://www.oodlestechnologies.com/blogs/Understanding-Absence-of-Error-fallacy-in-Software-Testing/
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Verification & Validation 

►Verification: determining whether the software fulfills the 
requirements. In other words, whether the software meets its 
specifications or not.

►Validation: determining whether the produced meets the intended 
usage (i.e., comprehensively and exclusively captures user needs)
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Verification vs Validation 
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Verification & Validation 

►Verification:
❖ more technical
❖ does not reveal flaws in the requirements/specifications

►Validation:
❖ depends on the domain knowledge
❖ exposes flaws in the specification and requirement 

deficiencies/discrepancies
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Recommended Texts

The Art of Software 
Testing

3rd Edition by Glenford Myers et al.

Introduction to 
Software Testing

2nd Edition by Paul Ammann and Jeff Offutt

Why Programs Fail
2nd  Edition by Andreas Zeller

Effective Software Testing
By Maurício Aniche
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Grading Breakdown

Grading Breakdown Grading Scale
5% Participation (attendances tracked!) [100%, 99%]; (99%, 93%]; (93%, 90%] A+;  A;  A-

0% In-class exercises (90%, 88%]; (88%, 83%]; (83%, 80%] B+;  B;  B-  

55% 4-5 homework assignments (80%, 78%]; (78%, 73%]; (73%, 70%] C+;  C;  C- 

20% Comprehensive test (70%, 68%]; (68%, 63%]; (63%, 60%] D+;  D;  D-

20% Team-based final project (60%, 0%]  F
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Homework

► 5-6 Homework assignments

► Solo work

► Submit by the specified deadline
❖ *** a budget of 4 late days***

► Either written (pen-paper), hands-on (programming, automated 
tools etc.), or combo
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Semester Project

► Hands-on
❖ Conduct a systematic and thorough testing and/or debugging on an 

existing piece of software 

► Teamwork (2-3 people)

► Possible deliverables:
❖ Testing artifacts if any
❖ REQURIRED The SUT 
❖ REQUIRED Code, scripts, configuration files, tools etc. 
❖ REQUIRED A thorough final report 
❖ REQUIRED A step-by-step instruction document explaining how to 

setup and run the tests 
❖ REQUIRED A concise in-class presentation
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Comprehensive test

►A closed-book, comprehensive test that covers all the material 
taught in the class over the semester. It tests your knowledge and 
understanding of the concepts, theories and methodologies 
discussed.

► It is more geared to test your understanding of the concepts rather 
than memorization.
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