
The material in this video is subject to the copyright of the owners of the material and is being provided for educational purposes under
rules of fair use for registered students in this course only. No additional copies of the copyrighted work may be made or distributed.

EN.601.422 / EN.601.622

Software Testing & Debugging

2

Double

Think “stunt double”

3

Test Double

► Test Double is a software component (method, class, collection of
classes etc.) that implement partial functionality.

► Test Double are used if some component:
❖ is not available or implemented yet
❖ will result in unrecoverable actions (BOMB effect!)
❖ is expensive to run (e.g., takes considerable amount of time)
❖ is too difficult to instantiate or configure

4

Test Double

► Test doubles must be implemented with as little change as possible to the
software

► Terminology:
❖ Stubs: a skeletal or special purpose implementation that typically

provides canned answers to calls made during the test
❖ Mocks: A pre-programmed class with ability to verify if the class under

test made correct interactions with them
❖ Fakes: objects with working implementations which “take shortcut”

when needed
❖ Dummys: objects that are passed around but never actually used

5

Examples – Bomb effect

► Software systems that:
❖ send emails to lots of customers
❖ performs financial transactions (e.g., charge a credit card)
❖ launches a missile!
❖ etc.

6

More Examples

► Test-Driven Development: tests are written and executed prior to
the implementation

►Database is not ready yet or a live db connection does not exist at
the time of testing

►Heavy calculations that take considerable amount of time to finish

►Need user interaction

7

Testing with Doubles

Software
Under Test

Dependency
Component

Double of
Dependency
Component

Test Harness
e.g., JUnit tests

8

Testing with Doubles

► Typical workflow:
1. obtain/create necessary test doubles (using mocking tools)
2. specify the expected sequence of interactions with the test

double
3. carry out the action under test
4. verify that the expected interactions, in fact, occurred

9

Testing with Doubles

►Many tools exist to help with this:
❖ Most IDEs automatically generate simple stubs
❖ Automated Mock testing tools:
● Java: Mockito, jMock, EasyMock, PowerMock etc.
● C++: Google Mock, TypeMock
● Python: unittest.mock, PyMock, Mox etc.
● Javascript: Jest, Sinon.js etc.
● etc.

10

public class WarehouseImpl implements Warehouse {
public int getInventory(String product) {
// getInventory implementation
}
public boolean hasInventory(String product, int count) {
// hasInventory implementation
}
public void remove(String product, int count) {
// remove implementation
}
public void add(String product, int count) {
// add implementation
}
}

public class Order {
String product;
int count;
boolean isFilled;

public Order(String product, int count) {
super();
this.product = product;
this.count = count;
isFilled = false;

}
public void fill(Warehouse wh) {

// implementation of fill
// set isFilled on success
if (wh.hasInventory(product, count)) {

wh.remove(product, count);
isFilled = true;

} else {
isFilled = false;

}
}
public boolean isFilled() {

return isFilled;
}

}

public interface Warehouse {
// Warehouse interface
int getInventory(String product);
boolean hasInventory(String product, int count);
void add(String product, int i);
void remove(String product, int count);

}

public class WarehouseImpl implements Warehouse {
public int getInventory(String product) {

// getInventory implementation
return -1; // STUB

}
public boolean hasInventory(String product, int count) {

// hasInventory implementation
return false; // STUB

}
public void remove(String product, int count) {

// remove implementation
}
public void add(String product, int count) {

// add implementation
}

}

Class Order Interface Warehouse

Class Warehouse

11

Example

Class under test:

Class Order

Dependency class
(aka. collaborator):

Class WarehouseImp

Mock of the class
WarehouseImp

Test Harness:
JUnit +

► Assume “Warehouse” is not implemented yet, is not available, is very
costly to instantiate from for testing, or making queries takes
considerable time, etc. ➔ Use a double (mock in this case)

12

State-based JUnit Tests
public class OrderTest {
private static String TALISKER = "Talisker";
private static String HIGHLAND_PARK = "Highland Park";
private Warehouse warehouse;
@BeforeEach
public void setUp() throws Exception {
warehouse = new WarehouseImpl();
warehouse.add(TALISKER, 50);
warehouse.add(HIGHLAND_PARK, 25);

}
@Test
public void testOrderIsFilledIfEnoughInWarehouse() {
Order order = new Order(TALISKER, 50);
order.fill(warehouse);
assertTrue(order.isFilled());
assertEquals(0, warehouse.getInventory(TALISKER));

}
@Test
public void testOrderDoesNotRemoveIfNotEnough() {
Order order = new Order(TALISKER, 51);
order.fill(warehouse);
assertFalse(order.isFilled());
assertEquals(50, warehouse.getInventory(TALISKER));

}
}

verifying the
output (i.e., state)

13

Behavior-based “Mock” testing

verifying the
interaction with
“collaborator”
(i.e., behavior)

public class OrderMockTest {
private static String TALISKER = "Talisker";
private static String HIGHLAND_PARK = "Highland Park";
private Warehouse warehouseMock;
@BeforeEach
public void setUp() throws Exception {

warehouseMock = mock(WarehouseImpl.class);
warehouseMock.add(TALISKER, 50);
warehouseMock.add(HIGHLAND_PARK, 25);

}
@Test
public void testOrderFilledCallsInventoryAndRemove() {

when(warehouseMock.hasInventory(TALISKER, 50)).thenReturn(true);
Order order = new Order(TALISKER, 50);
order.fill(warehouseMock);
verify(warehouseMock, times(1)).hasInventory(TALISKER, 50);
verify(warehouseMock, atLeast(1)).remove(TALISKER, 50);

}
@Test
public void testOrderNotFilledCallsOnlyhasInventory() {

when(warehouseMock.hasInventory(TALISKER, 51)).thenReturn(false);
Order order = new Order(TALISKER, 51);
order.fill(warehouseMock);
verify(warehouseMock, times(1)).hasInventory(TALISKER, 51);
verify(warehouseMock, never()).remove(anyString(), anyInt());

}
}

14

Behavior-based “Mock” testing
public class OrderMockTest {

private static String TALISKER = "Talisker";
private static String HIGHLAND_PARK = "Highland Park";
private Warehouse warehouseMock;
@BeforeEach
public void setUp() throws Exception {

warehouseMock = mock(WarehouseImpl.class);
warehouseMock.add(TALISKER, 50); warehouseMock.add(HIGHLAND_PARK, 25);

}
@Test
public void testOrderIsFilled {

when(warehouseMock.hasInventory(TALISKER, 50)).thenReturn(true);
Order order = new Order(TALISKER, 50);
order.fill(warehouseMock);
InOrder inOrder = inOrder(warehouseMock);
inOrder.verify(warehouseMock, times(1)).hasInventory(TALISKER, 50);
inOrder.verify(warehouseMock, times(1)).remove(TALISKER, 50);

}
@Test
public void testOrderNotFilledCallsOnlyhasInventory() {

when(warehouseMock.hasInventory(TALISKER, 51)).thenReturn(false);
Order order = new Order(TALISKER, 51);
order.fill(warehouseMock);
InOrder inOrder = inOrder(warehouseMock);
inOrder.verify(warehouseMock, times(1)).hasInventory(TALISKER, 51);
inOrder.verify(warehouseMock, never()).remove(anyString(), anyInt());

}
}

verifying the
order of
interactions

15

Mock vs. Stub

► Stub:
❖ State-based verification
❖ Provides canned answers
● Example: return 0 from a method that should return int, null from a

method that should return an object, etc.

►Mock:
❖ Behavior-based verification (aka interaction-based verification)
❖ Verifies certain interactions were made with the mock (in a certain

order)

16

Behavior- vs. State-based Testing

► If the dependency is available and undemanding:
❖ Use real class and state-based testing

► If the dependency is not available and/or demanding:
❖ Use real class and state-based if possible
❖ Otherwise, use interaction-based testing

17

Behavior- vs. State-based Testing

►Behavior-based testing tests the outbound calls of the SUT to
ensure it talks properly to its collaborators:
❖ More coupling to dependencies implementations since it checks all the

interactions, the order of interactions etc.
❖ If implementation of collaborators change (e.g., method names, method

parameters etc.), behavior-based tests are more likely to break

► State-based, on the other hand, focuses on the final state:
❖ Checks exact output values
❖ Less coupling to dependencies implementations

18

Relevant Reads and Resources

►Recommended texts:
❖ Introduction to Software Testing, 2nd Edition: ch 12

► Mocks aren’t Stubs by Martin Fowler:
❖ https://martinfowler.com/articles/mocksArentStubs.html

► https://site.mockito.org/

https://martinfowler.com/articles/mocksArentStubs.html
https://site.mockito.org/

	Slide 1
	Slide 2: Double
	Slide 3: Test Double
	Slide 4: Test Double
	Slide 5: Examples – Bomb effect
	Slide 6: More Examples
	Slide 7: Testing with Doubles
	Slide 8: Testing with Doubles
	Slide 9: Testing with Doubles
	Slide 10
	Slide 11: Example
	Slide 12: State-based JUnit Tests
	Slide 13: Behavior-based “Mock” testing
	Slide 14: Behavior-based “Mock” testing
	Slide 15: Mock vs. Stub
	Slide 16: Behavior- vs. State-based Testing
	Slide 17: Behavior- vs. State-based Testing
	Slide 18: Relevant Reads and Resources

