
The material in this video is subject to the copyright of the owners of the material and is being provided for educational purposes under
rules of fair use for registered students in this course only. No additional copies of the copyrighted work may be made or distributed.

EN.601.422 / EN.601.622

Software Testing & Debugging

2

The Goal of Software Testing

► In the last class we discussed:
❖ Why software testing matters
❖ “the goal of software testing”
● show presence of bugs, not their absence

❖ Fault vs error vs failure
❖ Testing is a destructive process!
❖ Verification vs. Validation

3

Plan for Today

► The V model, Test early rather than late

►RIPR Fault/Failure Model

►Oracle problem

►Review Few (More) Testing principles

4

The V Model

Read more at https://en.wikipedia.org/wiki/V-Model_(software_development)

https://en.wikipedia.org/wiki/V-Model_(software_development)

5

Testing Levels

►Acceptance Testing: assess software with respect to user’s needs
❖ Alpha & Beta Testing

► System Testing: assess software with respect to architectural design
and overall expected behavior

► Integration Testing: assess software with respect to sub-system
design

►Unit Testing: assess software with respect to implementation of
isolated modules/units

7

Faults as a Cost Driver

Software Engineering

Institute; Carnegie

Mellon University;

Handbook CMU/SEI-

96-HB-002

https://resources.sei.cmu.edu/asset_files/handbook/1996_002_001_16436.pdf

10

RIPR or Fault/Failure Model

Test

Fault

Incorrect

Program

State

Final Program State

Reaches

Infects

Propagates Reveals

Observed
Portion of
Program

State

Incorrect
Portion of
Final State

Test Oracles

11

RIPR Model

►Reachability: The location or locations in the program that contain
the fault must be reached

►Infection: The state of the program must be incorrect

►Propagation: The infected state must cause some output or final
state of the program to be incorrect

►Reveal: The tester must observe part of the incorrect portion of the
program state

12

Test Automation

► Two Types of Testing:
❖ Manual
❖ Automated

► Test Automation: automation of testing-related activities
❖ Generation: generate test cases automatically
❖ Execution: run tests on the software under test (SUT)
❖ Evaluation: evaluate test results i.e., does the test case pass or

fail

13

Test Evaluation

► Test Oracle: a mechanism for determining whether a test has
passed or failed. An oracle can be:
❖ Expected output value
❖ A program
❖ Documentation that gives specific correct outputs for specific

given inputs
❖ A (human) domain expert who can tell whether test output is

correct or not
❖ Any other way or combination of the above that can tell that

output is correct or not

14

Examples

►Unit Testing:
❖ E.g., assertEquals(4, sum(2, 2)): 4 is the oracle and hard coded!
❖ Is the above oracle complete?

15

Examples

►Unit Testing:
❖ E.g., assertEquals(4, sum(2, 2)): 4 is the oracle and hard coded!
❖ Is the above oracle complete?

public class MyClass {
int c;

public int sum(int a, int b) {
c = 10;
return a + b;

}
...

}

16

More Examples (Other Types of Testing)

► System Testing:
❖ E.g., Testing Google search engine with a query
❖ What set of results should it return exactly for the query?

► Security Testing:
❖ E.g., a test case that simulates a sql injection attack
❖ How and what test oracle would you write? i.e., what is exactly the expected

behavior?

► Usability testing:
❖ E.g., testing the Graphical User Interface of a web app for user friendliness
❖ A test case would be accomplishing a task using the GUI. Was it user friendly

enough?

17

Test Oracles

►A complete Oracle would be based on the entire final state after
running a test case
❖ Impractical/impossible

►Weak (partial) oracles:
❖ Usually, good enough in practice
❖ Examples:
● check for expected output
● check for software crashes
● Etc.

18

Test Evaluation

► One of the most challenging problems in software testing

► Much harder than it might seem; it might not be straightforward what the correct/expected
output is/should be

► Requires knowledge of domain, user interfaces, psychology etc.

► This is known as:

https://en.wikipedia.org/wiki/Test_oracle

The Oracle Problem!

https://en.wikipedia.org/wiki/Test_oracle

21

Testing Principle 1

A necessary part of any test case is a definition of
the expected output/behavior

22

Testing Principle 2

A test case must not have any logic in it (e.g., must not
calculate anything); A test case must merely set things

up, make calls, and verify the results.

23

Testing Principle 3

(Ideally) a programmer should avoid attempting to
test her own program

Debugging is best done by the original
developer though

24

Testing Principle 4

► Faults are not uniformly distributed
❖ The probability of the existence of more errors in a section of a

program is proportional to the number of errors already found in
that section.

The art of software testing, 3rd edition

25

Testing Principle 5

► Examining a program to see if it does what it is supposed to do is
only half the battle; the other half is seeing whether the program
also does not what it is not supposed to do

26

More Testing Principles

►Discussed in the last class:
❖ Test early
❖ Pesticide Paradox
❖ Absence of Error Fallacy
❖ Testing is context dependent

32

What is the fault?

33

What is the fault?

34

What is the fault?

35

What is the fault?

36

What is the fault?

37

What is the fault?

38

What is the fault?

39

What is the fault?

40

Can you see a fault?

Taken from Effective Java, 3rd Edition by Joshua Bloch

public class Point {
private final int x;
private final int y;
public Point(int x, int y) {

this.x = x; this.y = y;
}
@Override
public boolean equals(Object o) {

if (!(o instanceof Point))
return false;

Point p = (Point)o;
return p.x == x && p.y == y;

}
// remainder omitted

}

public class ColorPoint extends Point {
private final Color color;
public ColorPoint(int x, int y, Color color) {

super(x, y);
this.color = color;

}
@Override
public boolean equals(Object o) {

if (!(o instanceof ColorPoint))
return false;

return super.equals(o) &&
((ColorPoint) o).color == color;

}

41

Can you see a fault?

Taken from Effective Java, 3rd Edition by Joshua Bloch

public class Point {
private final int x;
private final int y;
public Point(int x, int y) {

this.x = x; this.y = y;
}
@Override
public boolean equals(Object o) {

if (!(o instanceof Point))
return false;

Point p = (Point)o;
return p.x == x && p.y == y;

}
... // remainder omitted

}

public class ColorPoint extends Point {
private final Color color;
public ColorPoint(int x, int y, Color color) {

super(x, y);
this.color = color;

}
@Override
public boolean equals(Object o) {

if (!(o instanceof ColorPoint))
return false;

return super.equals(o) &&
((ColorPoint) o).color == color;

}

// Tests
Point p = new Point(1, 2);
ColorPoint cp1;
cp1 = new ColorPoint(1, 2, Color.RED);

 ColorPoint(1, 2, Color.BLUE);
p.equals(cp1); // Test 1: result true

 // Test 2: result false

equals should be symmetric!

cp1.equals(p);

42

Let’s try to fix

@Override
public boolean equals(Object o) {

if (!(o instanceof Point))
return false;

// If o is a normal Point, do a color-blind comparison
if (!(o instanceof ColorPoint))

return o.equals(this);
// o is a ColorPoint, do a full comparison
return super.equals(o) && ((ColorPoint) o).color == color;

}

43

Let’s try to fix

@Override
public boolean equals(Object o) {

if (!(o instanceof Point))
return false;

// If o is a normal Point, do a color-blind comparison
if (!(o instanceof ColorPoint))

return o.equals(this);
// o is a ColorPoint, do a full comparison
return super.equals(o) && ((ColorPoint) o).color == color;

}

// Test
ColorPoint p1 = new ColorPoint(1, 2, Color.RED);
Point p2 = new Point(1, 2);
ColorPoint p3 = new ColorPoint(1, 2, Color.BLUE);
p1.equals(p2); // returns true
p2.equals(p3); // returns true
p1.equals(p3); // returns false

Violation of transitivity

44

What is a solution then?

► Turns out this is a fundamental problem of equivalence relations in
object-oriented languages
❖ there is no way to extend an instantiable class and add a value

component while preserving the equals contract

►A reasonable workaround is to use composition in place of
inheritance // Adds a value component without

// violating the equals contract
public class ColorPoint {

private final Point point;
private final Color color;
…

	Slide 1
	Slide 2: The Goal of Software Testing
	Slide 3: Plan for Today
	Slide 4: The V Model
	Slide 5: Testing Levels
	Slide 7: Faults as a Cost Driver
	Slide 10: RIPR or Fault/Failure Model
	Slide 11: RIPR Model
	Slide 12: Test Automation
	Slide 13: Test Evaluation
	Slide 14: Examples
	Slide 15: Examples
	Slide 16: More Examples (Other Types of Testing)
	Slide 17: Test Oracles
	Slide 18: Test Evaluation
	Slide 21: Testing Principle 1
	Slide 22: Testing Principle 2
	Slide 23: Testing Principle 3
	Slide 24: Testing Principle 4
	Slide 25: Testing Principle 5
	Slide 26: More Testing Principles
	Slide 32: What is the fault?
	Slide 33: What is the fault?
	Slide 34: What is the fault?
	Slide 35: What is the fault?
	Slide 36: What is the fault?
	Slide 37: What is the fault?
	Slide 38: What is the fault?
	Slide 39: What is the fault?
	Slide 40: Can you see a fault?
	Slide 41: Can you see a fault?
	Slide 42: Let’s try to fix
	Slide 43: Let’s try to fix
	Slide 44: What is a solution then?

