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Software Testing & Debugging
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The Goal of Software Testing

► In the last class we discussed:
❖ Why software testing matters
❖ “the goal of software testing”
● show presence of bugs, not their absence

❖ Fault vs error vs failure
❖ Testing is a destructive process!
❖ Verification vs. Validation
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Plan for Today

► The V model, Test early rather than late

►RIPR Fault/Failure Model

►Oracle problem

►Review Few (More) Testing principles
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The V Model

Read more at https://en.wikipedia.org/wiki/V-Model_(software_development)

https://en.wikipedia.org/wiki/V-Model_(software_development)
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Testing Levels

►Acceptance Testing: assess software with respect to user’s needs
❖ Alpha & Beta Testing

► System Testing: assess software with respect to architectural design 
and overall expected behavior

► Integration Testing: assess software with respect to sub-system 
design

►Unit Testing: assess software with respect to implementation of 
isolated modules/units
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Faults as a Cost Driver

Software Engineering 

Institute; Carnegie 

Mellon University; 

Handbook CMU/SEI-

96-HB-002

https://resources.sei.cmu.edu/asset_files/handbook/1996_002_001_16436.pdf
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RIPR or Fault/Failure Model

Test

Fault

Incorrect 

Program 

State

Final Program State

Reaches

Infects

Propagates Reveals

Observed 
Portion of 
Program 

State

Incorrect 
Portion of 
Final State

Test Oracles



11

RIPR Model

►Reachability: The location or locations in the program that contain 
the fault must be reached 

►Infection: The state of the program must be incorrect

►Propagation: The infected state must cause some output or final 
state of the program to be incorrect

►Reveal: The tester must observe part of the incorrect portion of the 
program state
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Test Automation

► Two Types of Testing:
❖ Manual
❖ Automated

► Test Automation: automation of testing-related activities
❖ Generation: generate test cases automatically
❖ Execution: run tests on the software under test (SUT)
❖ Evaluation: evaluate test results i.e., does the test case pass or 

fail
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Test Evaluation

► Test Oracle: a mechanism for determining whether a test has 
passed or failed. An oracle can be:
❖ Expected output value
❖ A program
❖ Documentation that gives specific correct outputs for specific 

given inputs
❖ A (human) domain expert who can tell whether test output is 

correct or not
❖ Any other way or combination of the above that can tell that 

output is correct or not
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Examples

►Unit Testing:
❖ E.g., assertEquals(4, sum(2, 2)): 4 is the oracle and hard coded!
❖ Is the above oracle complete?
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Examples

►Unit Testing:
❖ E.g., assertEquals(4, sum(2, 2)): 4 is the oracle and hard coded!
❖ Is the above oracle complete?

public class MyClass {
int c;

public int sum(int a, int b) {
c  = 10;
return a + b;

}
...

}
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More Examples (Other Types of Testing)

► System Testing:
❖ E.g., Testing Google search engine with a query
❖ What set of results should it return exactly for the query?

► Security Testing:
❖ E.g., a test case that simulates a sql injection attack
❖ How and what test oracle would you write? i.e., what is exactly the expected 

behavior?

► Usability testing:
❖ E.g., testing the Graphical User Interface of a web app for user friendliness
❖ A test case would be accomplishing a task using the GUI. Was it user friendly 

enough?
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Test Oracles

►A complete Oracle would be based on the entire final state after 
running a test case
❖ Impractical/impossible

►Weak (partial) oracles:
❖ Usually, good enough in practice
❖ Examples:
● check for expected output
● check for software crashes
● Etc.
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Test Evaluation

► One of the most challenging problems in software testing

► Much harder than it might seem; it might not be straightforward what the correct/expected 
output is/should be

► Requires knowledge of domain, user interfaces, psychology etc.

► This is known as:

https://en.wikipedia.org/wiki/Test_oracle

The Oracle Problem!

https://en.wikipedia.org/wiki/Test_oracle
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Testing Principle 1

A necessary part of any test case is a definition of 
the expected output/behavior
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Testing Principle 2

A test case must not have any logic in it (e.g., must not 
calculate anything ); A test case must merely set things 

up, make calls, and verify the results.
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Testing Principle 3

(Ideally) a programmer should avoid attempting to 
test her own program

Debugging is best done by the original 
developer though
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Testing Principle 4

► Faults are not uniformly distributed
❖ The probability of the existence of more errors in a section of a 

program is proportional to the number of errors already found in 
that section.

The art of software testing, 3rd edition
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Testing Principle 5

► Examining a program to see if it does what it is supposed to do is 
only half the battle; the other half is seeing whether the program 
also does not what it is not supposed to do
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More Testing Principles

►Discussed in the last class:
❖ Test early
❖ Pesticide Paradox
❖ Absence of Error Fallacy
❖ Testing is context dependent
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What is the fault?
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What is the fault?
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What is the fault?
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What is the fault?
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What is the fault?
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What is the fault?
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What is the fault?
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What is the fault?
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Can you see a fault?

Taken from Effective Java, 3rd Edition by Joshua Bloch

public class Point { 
private final int x; 
private final int y; 
public Point(int x, int y) { 

this.x = x; this.y = y; 
} 
@Override 
public boolean equals(Object o) { 

if (!(o instanceof Point)) 
return false; 

Point p = (Point)o; 
return p.x == x && p.y == y; 

} 
// remainder omitted 

}

public class ColorPoint extends Point { 
private final Color color; 
public ColorPoint(int x, int y, Color color) {  

super(x, y); 
this.color = color; 

}
@Override 
public boolean equals(Object o) { 

if (!(o instanceof ColorPoint)) 
return false; 

return super.equals(o) && 
((ColorPoint) o).color == color; 

}
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Can you see a fault?

Taken from Effective Java, 3rd Edition by Joshua Bloch

public class Point { 
private final int x; 
private final int y; 
public Point(int x, int y) { 

this.x = x; this.y = y; 
} 
@Override 
public boolean equals(Object o) { 

if (!(o instanceof Point)) 
return false; 

Point p = (Point)o; 
return p.x == x && p.y == y; 

} 
... // remainder omitted 

}

public class ColorPoint extends Point { 
private final Color color; 
public ColorPoint(int x, int y, Color color) {  

super(x, y); 
this.color = color; 

}
@Override 
public boolean equals(Object o) { 

if (!(o instanceof ColorPoint)) 
return false; 

return super.equals(o) && 
((ColorPoint) o).color == color; 

}

// Tests
Point p = new Point(1, 2); 
ColorPoint cp1;
cp1 = new ColorPoint(1, 2, Color.RED);

 ColorPoint(1, 2, Color.BLUE);
p.equals(cp1); // Test 1: result true

 // Test 2: result false

equals should be symmetric!

cp1.equals(p);
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Let’s try to fix

@Override 
public boolean equals(Object o) { 

if (!(o instanceof Point)) 
return false; 

// If o is a normal Point, do a color-blind comparison 
if (!(o instanceof ColorPoint)) 

return o.equals(this); 
// o is a ColorPoint, do a full comparison 
return super.equals(o) && ((ColorPoint) o).color == color; 

}
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Let’s try to fix

@Override 
public boolean equals(Object o) { 

if (!(o instanceof Point)) 
return false; 

// If o is a normal Point, do a color-blind comparison 
if (!(o instanceof ColorPoint)) 

return o.equals(this); 
// o is a ColorPoint, do a full comparison 
return super.equals(o) && ((ColorPoint) o).color == color; 

}

// Test
ColorPoint p1 = new ColorPoint(1, 2, Color.RED); 
Point p2 = new Point(1, 2); 
ColorPoint p3 = new ColorPoint(1, 2, Color.BLUE);
p1.equals(p2); // returns true
p2.equals(p3); // returns true
p1.equals(p3); // returns false

Violation of transitivity
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What is a solution then?

► Turns out this is a fundamental problem of equivalence relations in 
object-oriented languages
❖ there is no way to extend an instantiable class and add a value 

component while preserving the equals contract

►A reasonable workaround is to use composition in place of 
inheritance // Adds a value component without 

// violating the equals contract
public class ColorPoint { 

private final Point point; 
private final Color color;
…
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