
The material in this video is subject to the copyright of the owners of the material and is being provided for educational purposes under
rules of fair use for registered students in this course only. No additional copies of the copyrighted work may be made or distributed.

EN.601.422 / EN.601.622

Software Testing & Debugging

2

Plan for today

►Blackbox vs Whitebox testing

►Blackbox testing techniques:
❖ Partitioning of input/output space into equivalence classes
❖ Boundary Analysis
❖ Error Guessing

3

Blackbox and Whitebox Testing

►Blackbox testing views the software as a black box. The goal is to
concentrate on the “software specifications”
❖ also known as data-driven, io-driven, or specification-based testing

►Whitebox testing is concerned with the degree to which test cases
cover the source code of the software
❖ also know as Glassbox or logic-driven
testing

4

Greybox Testing

►When there is only partial access/understanding of the internal
structure of the software under test (SUT)
❖ you know the algorithm, but not the exact implementation
❖ you know the design or structure of the code, but not the exact

implementation
❖ Etc.

►We do not examine this further in the class

5

Blackbox and Whitebox Testing

►Blackbox testing:
❖ test cases drawn solely from the specifications (e.g., formal

specifications, API docs, user manual etc.)
❖ exhaustive Blackbox testing is to try all possible inputs

►Whitebox testing:
❖ test cases drawn by looking at (and manipulating) source code
❖ exhaustive Whitebox testing is to try all execution paths

6

Equivalence Class

► A subset of the form {x ∈ X: x R a}, where a is an element of X and the
notation "x R y" is used to mean that there is an equivalence relation
between x and y

► In other words:
❖ An equivalence class (or equivalence block) is the name that we give

to the subset of S which includes all elements that are equivalent to
each other. “Equivalent” is dependent on a specified relationship (i.e.,
characteristic), called an equivalence relation or characteristic. If there’s
an equivalence relation between any two elements, they’re called
equivalent.

7

Equivalence Class

8

Equivalence Class Examples

► Example 1: X is the set of all cars. ~ is the equivalence relation "has the
same color as", then equivalence classes consist of cars of different colors.
e.g., set of all red cars, set of all blue cars, etc.

► Example 2: I is the set of all integer values. ~ is the equivalence
relation "has the same sign as", then equivalence classes consist of 1) set
of all negative integers, 2) zero, and 3) set of all positive integers.

► Example 3: A is the set of all Matresses. ~ is the equivalence relation "has
the same size", then the equivalence classes consist of sets of all
mattresses of the same size (i.e., Crib, Twin, Twin XL, Full, Queen, King,
Cal King)

9

Partitioning domain into equivalence classes

► 1. Partition the input/output domain into a set of equivalence
classes

► 2. Produce a representative concrete test case for each equivalence
class

► The idea is:
❖ if a test case from an equivalence class detects an error/failure,

so does all the other test cases of the same equivalence class
❖ conversely, if a test case from an equivalence class does not

detect an error/failure, no other test cases of the same
equivalence class does

10

Equivalence Partitioning

► Given characteristic (i.e., relation) C:
the partition q defines a set of blocks(i.e., equivalence classes) over Domain
D:

Bq = b1 , b2 , …, bQ

► Two important properties for selecting
equivalence classes correctly:

❖ disjointedness: Blocks (i.e., classes) must be pairwise disjoint; that is no two
blocks overlap

❖ completeness: Together the blocks cover entirety of the domain D

bi  bj = ,  i  j, bi, bj  Bq

ራ𝒃 = 𝑫
𝑏𝐵𝑞

b1 b2

b3

11

Relation (i.e., characteristic)

► Each partition is built based on a characteristic C:

► Examples:
❖ Object ‘a’ is null ➔ two classes namely null and non-null
❖ Input device type ➔multiple classes namely DVD, CD, VCR …
❖ Shirt Size ➔multiple size classes namely xs, s, m, l, xl, xxl …
❖ etc.

12

Example

► Input: Text file f

►Characteristic C: Order of file f
❖ 𝑏1= sorted in ascending order
❖ 𝑏2= sorted in descending order
❖ 𝑏3= not sorted in any specific order

Is this a valid partitioning based on “C”?

13

Steps to Input Space Partitioning

►Design the characteristics to create partition(s) over the
input/output domain
❖ **It is POSSIBLE to design characteristics based on output**

►Decide on the blocks (i.e., equivalence classes) for each
partitioning/characteristic

►Derive representative values for each block

14

Triangle Example

/**

* decides the type of the triangle given the lengths of the three sides

* @param a first length

* @param b second length

* @param c third length

* @return an int indicating the type of the triangle: 0 is invalid, 1 is scalene, 2 is isosceles, and 3 is equilateral
*/

public static int triangleType(int a, int b, int c)

Is the above a valid partitioning over
the output domain?

Assume we do a partitioning over the output domain using characteristic “Geometric
Classification”. From this, we derive four classes: 1) scalene, 2) isosceles, 3) equilateral,
and 4) invalid.

15

Triangle Example

► Technically, an equilateral is (oftentimes) isosceles by definition!

1) Scalene
2) Isosceles but not equilateral,
3) equilateral,
4) invalid.

This is better!

16

Identifying Equivalence Classes

► Typically produced from specifications:
❖ take sentences/phrases about the input/output, identify characteristic(s)

based on the specified condition(s) and apply partitioning to produce the
equivalence classes
● Always produce both valid and invalid equivalence classes

Example: “the count should range from 1 to 999 inclusive”
one valid equivalence class: 1 ≤ count ≤ 999➔ test input value: 230
two invalid equivalence classes: count > 999 ➔ test input value: 1002

count < 1➔ test input value: -1

► If an input specifies a “must-be” situation, produce one valid and one
invalid equivalence class

Example: “the first character of the string must be a digit”
one valid equivalence class: the string starts with a digit ➔ “1s2”
one invalid equivalence class: the string does not start with a digit ➔ “%h”

17

Boundary Value Analysis

► Test conditions on bounds between equivalence classes
► Rationale:
❖ likely source of programmer errors (< vs. <=, etc.)
❖ Software specifications may be fuzzy/vague about behavior on

boundaries
❖ often uncovers internal hidden limits in code
● Example:

Specs: array must be sized no less than 1 and no larger than 10

→ Three equivalence blocks: size < 1, 1<= size <= 10, size >10
→ try array sizes 0, 1, 10, and 11

 (also, try MAX_INT and MIN_INT)

18

Boundary Value Analysis

► Example 1: input condition specifies the valid domain of an input
value is between -1 and 1.0 ➔ write test cases with values -1.0, 1.0,
-1.001, and 1.001

► Example 2: input condition specifies an input file can contain 1 -
255 records ➔ write test cases for files with 0, 1, 255, 256 records

► Example 3: output condition specifies payroll software computes
the monthly FICA deduction of minimum $0.00 and the maximum
of $1,165.25 ➔ try to write/invent test cases that might cause a
negative deduction or a deduction of more than $1,165.25

19

Error Guessing

►No systematic way

►Use your intuition/experience trying to cause errors/failures in the
system
❖ try different error-prone situations
❖ Examples: zero for int values, null for objects, invalid inputs, out of

bound inputs, empty sets/lists, sets/lists with one entry, inputs based
on holes in the specifications, negative inputs where they are not
relevant

►Complementary to other testing techniques

20

Relevant Reads

►Recommended Textbooks:
❖ Intro to Software Testing (ch1, ch2)
❖ The Art of Software Testing (ch1, ch2, ch4)

© The Johns Hopkins University 2018, All Rights Reserved.

	Slide 1
	Slide 2: Plan for today
	Slide 3: Blackbox and Whitebox Testing
	Slide 4: Greybox Testing
	Slide 5: Blackbox and Whitebox Testing
	Slide 6: Equivalence Class
	Slide 7: Equivalence Class
	Slide 8: Equivalence Class Examples
	Slide 9: Partitioning domain into equivalence classes
	Slide 10: Equivalence Partitioning
	Slide 11: Relation (i.e., characteristic)
	Slide 12: Example
	Slide 13: Steps to Input Space Partitioning
	Slide 14: Triangle Example
	Slide 15: Triangle Example
	Slide 16: Identifying Equivalence Classes
	Slide 17: Boundary Value Analysis
	Slide 18: Boundary Value Analysis
	Slide 19: Error Guessing
	Slide 20: Relevant Reads
	Slide 21

