
The material in this video is subject to the copyright of the owners of the material and is being provided for educational purposes under
rules of fair use for registered students in this course only. No additional copies of the copyrighted work may be made or distributed.

EN.601.422 / EN.601.622

Software Testing & Debugging

2

Test Requirement, Coverage Criteria, and Coverage

► Test Requirement (TR): a specific element of software artifact that a test
case must satisfy/cover.
❖ Software artifact can be source code, user manual, API doc, design

components (e.g., UML diagrams), GUI, input space, etc.

► Coverage Criterion: a rule or collection of rules to generate test
requirements from a software artifact.

► Coverage: Given the set of TRs for a coverage criterion C, a test set T
satisfies C (i.e., achieves coverage C) if and only if for any test requirement
tr in TR, there is a test case t in T that covers/satisfies tr.

3

Example: Path Coverage Criterion

// Tests

List ray0 = new ArrayList<Integer>();
List ray1 = new ArrayList<Integer>();
ray1.add(2);
countOf(ray0, 2); // abcf
countOf(ray1, 1); // abcdcf
countOf(ray1, 2); // abcdecf

Paths to cover:

abcf
abcdcf
abcdecf

a

b

c

d

e

f

public static int countOf(ArrayList<Integer> ray, int key) {
 int count = 0;

for (int i = 0; i < ray.size(); ++i) {
 if (ray.get(i).equals(key)) {
 count++;
 }
 }
 return count;
}

Test requirements

4

More Definitions

► Minimal Test Set: Given a set of test requirements TR and a test set T, T
is minimal if removing any single test case from T will cause T to no
longer satisfy all test requirements in TR.

► Minimum Test Set: A test set T that satisfies all test requirements in TR
is minimum if there exists no smaller test set that can also satisfy all test
requirements in TR.

► Coverage Level: Given test set T and test requirements set TR, assume
that T covers/satisfies x number of test requirements in TR. The coverage
level of T is:

𝑥

|𝑇𝑅|

5

Test Requirement Infeasibility

► Some test requirements may be infeasible, i.e., can never be
satisfied.

► Example: unreachable code, thus not possible no achieve
statement or branch coverage ➔ infeasible test requirement

if (x < 0) {
 // do some stuff
}
else if (x < -2) {
 // do some other stuff
}

6

Ways to Leverage Coverage Criteria

► 1: directly derive test cases to achieve coverage
❖ Systematic
❖ Not always easy/straightforward/possible
❖May not be always possible to automate

► 2: derive test cases and measure coverage level
❖ Less systematic
❖ Easier/more straightforward to perform
❖ (The more) common practice in the industry

7

How to Utilize Coverage Criteria?

► 1: directly derive test cases to achieve coverage

► 2: derive test cases and measure coverage level:

Generator, i.e., “Test Generation” tools

Recognizer, i.e., “Coverage Analysis” tools

8

Important Question

Given a coverage criterion C, how do you compare 90% coverage
level to 100% coverage level ? Does this mean the former is

10% less effective in revealing faults?

9

Subsumption

How to compare different coverage criteria against each other?

How to decide if one coverage criterion is stronger/weaker
than another one?

Subsumption: A test criterion C1 subsumes C2 if and only if every set of
test cases that satisfies criterion C1 also satisfies C2
Example: Branch Coverage (BC) subsumes Statement Coverage (SC)

10

Question

Assume coverage criterion C1 subsumes coverage criteria C2. T1 is a test set
that satisfies C1 on program P and T2 is another test set that satisfies C2 on P.
It can be concluded that T1 detects at least as many faults in P as T2 does.

True of False? Justify your answer.

11

Advantages of Criteria-based Testing

►Maximize the “bang for the buck”
❖ Fewer tests that are more effective at finding faults

► Comprehensive test set with minimal overlap

►“Traceability” from software artifacts to tests

► A “stopping rule” for testing

► Lend themselves well to “automation”

12

Question

Any downsides to (or concerns with!) criteria-based testing?

13

Limitations of Coverage Criteria

►Might not be easy/straightforward to generate all the test
requirements

►Might not be easy/straightforward to generate test cases that
satisfy the generated test requirements

►Might still be very costly to achieve

►Most important: what is the correlation, if any, between a coverage
criterion satisfaction and its fault detection ability?

14

Question

Suppose that coverage criterion C1 subsumes coverage criterion C2.
Further suppose that test set T1 satisfies C1 and on program P test set

T2 satisfies C2, also on P.

 1. Does T1 necessarily satisfy C2? Explain.

 2. Does T2 necessarily satisfy C1? Explain.

 3. If P contains a fault, and T2 reveals the fault, T1 does not

 necessarily also reveal the fault. Explain

15

Combinatorial Coverage Criteria

►We already discussed equivalence partitioning (EP) technique when
we talked about Blackbox testing

►We learned how to do EP on a domain
❖ e.g., domain is integer values → negative, zero, positive

► In practice though, oftentimes we have several input/output
domain to work with
❖ e.g., a function that has more than one input parameter

We need to work with combinations of equivalence blocks

16

Example

/**
* Count the number of occurrences of a target value in an ArrayList
* @param ray the ArrayList instance
* @param key the target value
* @return count of occurrences
*/

public static int countOf(ArrayList<Integer> ray, int key) {
 int count = 0;

for (int i = 0; i < ray.size(); ++i) {
 if (ray.get(i).equals(key)) {
 count++;
 }
 }
 return count;
}

17

All Combinations Coverage

All Combinations (ACoC) : All combinations of blocks from all
characteristics must be used.

countOf example with the following blocks:
A. ArrayList null 1. key negative
B. ArrayList empty 2. key zero
C. ArrayList size 1 3. key positive
D. ArrayList size > 1

Test requirements for ACoC would
include all possible combinations of
the blocks:

(A, 1), (A, 2), …, (B, 1), …, (D, 3)

18

Each Choice Coverage

Each Choice Coverage (ECC) : One value from each block for
each characteristic must be used in at least one test case.

Test requirements for ECC would be:

(A, 1), (B, 2), (C, 3), (D, 1)

countOf example with the following blocks:
A. ArrayList null 1. key negative
B. ArrayList empty 2. key zero
C. ArrayList size 1 3. key positive
D. ArrayList size > 1

19

Pair-Wise Coverage

Pair-Wise Coverage (PWC) : A value from each block for each
characteristic must be combined with a value from every block for
each of the other characteristics.

Assume we have three partitions with
the following blocks:

[A, B], [1, 2, 3], and [x, y]

Test requirements for PWC would be:

(A, 1, x) (B, 1, y)
(A, 2, x) (B, 2, y)
(A, 3, x) (B, 3, y)
(A, 1, y) (B, 1, x)

20

t-Wise Coverage

Assume we have three partitions with
the following blocks:

[A, B], [1, 2, 3], and [x, y]

Test values for 3-wise coverage would
be the same as ACoC, why?

t-Wise Coverage (TWC) : A value from each block for each group of
t characteristics must be combined.

21

Base Choice Coverage

Assume we have three partitions with
the following blocks where A, 1, and x
are base choices:

[A, B], [1, 2, 3], and [x, y]

Test values for BCC coverage would be:
(A, 1, x) base test
(B, 1, x)
(A, 2, x)
(A, 3, x)
(A, 1, y)

Base Choice Coverage (BCC) : A base choice block is chosen for each
characteristic, and a base test is formed by using the base choice for
each characteristic. Subsequent tests are chosen by holding all but
one base choice constant and using each non-base choice in each of
the other characteristics.

22

Base Choice Selection

► “base choice” essentially corresponds to the “default” choice for a block

► Base choice should be feasible (i.e., executable)

► Base choices usually take the “happy path”
❖ E.g., base choice block for “factor” is positive values

void multiples(int factor) {
 if (factor <= 0) {
 System.out.println(“Provide a positive value!");
 } else {
 // Display consecutive positive factors until 100
 int value = factor;
 while (value <= 100) {
 System.out.print(value + " ");
 value = value + factor;
 }
 }
}

23

Relevant Reads & Resources

►Recommended Textbooks:
❖ Introduction to Software Testing, 2nd Edition: ch5 and ch6

© The Johns Hopkins University 2018, All Rights Reserved.

	Slide 1
	Slide 2: Test Requirement, Coverage Criteria, and Coverage
	Slide 3: Example: Path Coverage Criterion
	Slide 4: More Definitions
	Slide 5: Test Requirement Infeasibility
	Slide 6: Ways to Leverage Coverage Criteria
	Slide 7: How to Utilize Coverage Criteria?
	Slide 8: Important Question
	Slide 9: Subsumption
	Slide 10: Question
	Slide 11: Advantages of Criteria-based Testing
	Slide 12: Question
	Slide 13: Limitations of Coverage Criteria
	Slide 14: Question
	Slide 15: Combinatorial Coverage Criteria
	Slide 16: Example
	Slide 17: All Combinations Coverage
	Slide 18: Each Choice Coverage
	Slide 19: Pair-Wise Coverage
	Slide 20: t-Wise Coverage
	Slide 21: Base Choice Coverage
	Slide 22: Base Choice Selection
	Slide 23: Relevant Reads & Resources
	Slide 24

