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Test Requirement, Coverage Criteria, and Coverage

► Test Requirement (TR): a specific element of software artifact that a test 
case must satisfy/cover.
❖ Software artifact can be source code, user manual, API doc, design 

components (e.g., UML diagrams), GUI, input space, etc.

► Coverage Criterion: a rule or collection of rules to generate test 
requirements from a software artifact.

► Coverage: Given the set of TRs for a coverage criterion C, a test set T 
satisfies C (i.e., achieves coverage C) if and only if for any test requirement 
tr in TR, there is a test case t in T  that covers/satisfies tr.
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Example: Path Coverage Criterion

// Tests

List ray0 = new ArrayList<Integer>();
List ray1 = new ArrayList<Integer>();
ray1.add(2);
countOf(ray0, 2); // abcf
countOf(ray1, 1); // abcdcf
countOf(ray1, 2); // abcdecf

Paths to cover:

abcf
abcdcf
abcdecf

a

b

c

d

e

f

public static int countOf(ArrayList<Integer> ray, int key) {
   int count = 0;

for (int i = 0; i < ray.size(); ++i) {
      if (ray.get(i).equals(key))  {
         count++;
      }
   }
   return count;
}

Test requirements
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More Definitions

► Minimal Test Set: Given a set of test requirements TR and a test set T, T  
is minimal if removing any single test case from T  will cause T  to no 
longer satisfy all test requirements in TR.

► Minimum Test Set: A test set T  that satisfies all test requirements in TR 
is minimum if there exists no smaller test set that can also satisfy all test 
requirements in TR.

► Coverage Level: Given test set T and test requirements set TR, assume 
that T covers/satisfies x  number of test requirements in TR. The coverage 
level of T  is: 

𝑥

|𝑇𝑅|
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Test Requirement Infeasibility

► Some test requirements may be infeasible, i.e., can never be 
satisfied.

► Example: unreachable code, thus not possible no achieve  
statement or branch coverage ➔ infeasible test requirement

if (x < 0) {
   // do some stuff
}
else if (x < -2) {
   // do some other stuff
}
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Ways to Leverage Coverage Criteria

► 1: directly derive test cases to achieve coverage
❖ Systematic
❖ Not always easy/straightforward/possible 
❖May not be always possible to automate

► 2: derive test cases and measure coverage level
❖ Less systematic
❖ Easier/more straightforward to perform
❖ (The more) common practice in the industry 
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How to Utilize Coverage Criteria?

► 1: directly derive test cases to achieve coverage

► 2: derive test cases and measure coverage level:

Generator, i.e., “Test Generation” tools

Recognizer, i.e., “Coverage Analysis” tools 
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Important Question

Given a coverage criterion C, how do you compare 90% coverage 
level to 100% coverage level ? Does this mean the former is 

10% less effective in revealing faults?
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Subsumption

How to compare different coverage criteria against each other?

How to decide if one coverage criterion is stronger/weaker 
than another one?

Subsumption: A test criterion C1 subsumes C2 if and only if every set of 
test cases that satisfies criterion C1 also satisfies C2
Example:  Branch Coverage (BC) subsumes Statement Coverage (SC)
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Question

Assume coverage criterion C1 subsumes coverage criteria C2. T1 is a test set 
that satisfies C1 on program P and T2 is another test set that satisfies C2 on P. 
It can be concluded that T1 detects at least as many faults in P as T2 does.

True of False? Justify your answer.
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Advantages of Criteria-based Testing

►Maximize the “bang for the buck”
❖ Fewer tests that are more effective at finding faults

► Comprehensive test set with minimal overlap

►“Traceability” from software artifacts to tests

► A “stopping rule” for testing

► Lend themselves well to “automation”
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Question

Any downsides to (or concerns with!) criteria-based testing?
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Limitations of Coverage Criteria

►Might not be easy/straightforward to generate all the test  
requirements

►Might not be easy/straightforward to generate test cases that 
satisfy the generated test requirements

►Might still be very costly to achieve

►Most important: what is the correlation, if any, between a coverage 
criterion satisfaction and its fault detection ability?
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Question

Suppose that coverage criterion C1 subsumes coverage criterion C2. 
Further suppose that test set T1 satisfies C1 and on program P test set 

T2 satisfies C2, also on P. 

 1. Does T1 necessarily satisfy C2? Explain. 

 2. Does T2 necessarily satisfy C1? Explain. 

 3. If P contains a fault, and T2 reveals the fault, T1 does not 

           necessarily also reveal the fault. Explain
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Combinatorial Coverage Criteria

►We already discussed equivalence partitioning (EP) technique when 
we talked about Blackbox testing

►We learned how to do EP on a domain
❖ e.g., domain is integer values → negative, zero, positive

► In practice though, oftentimes we have several input/output 
domain to work with 
❖ e.g., a function that has more than one input parameter

*We need to work with combinations of equivalence blocks*
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Example

/**
* Count the number of occurrences of a target value in an ArrayList
* @param ray the ArrayList instance
* @param key the target value
* @return count of occurrences
*/

public static int countOf(ArrayList<Integer> ray, int key) {
   int count = 0;

for (int i = 0; i < ray.size(); ++i) {
      if (ray.get(i).equals(key))  {
         count++;
      }
   }
   return count;
}
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All Combinations Coverage

All Combinations (ACoC) : All combinations of blocks from all 
characteristics must be used.

countOf example with the following blocks:
A. ArrayList null                1. key negative
B. ArrayList empty           2. key zero
C. ArrayList size 1             3. key positive
D. ArrayList size > 1

Test requirements for ACoC would 
include all possible combinations of 
the blocks:

(A, 1), (A, 2), …, (B, 1), …, (D, 3)
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Each Choice Coverage

Each Choice Coverage (ECC) : One value from each block for 
each characteristic must be used in at least one test case.

Test requirements for ECC would be:

(A, 1), (B, 2), (C, 3), (D, 1)

countOf example with the following blocks:
A. ArrayList null                1. key negative
B. ArrayList empty           2. key zero
C. ArrayList size 1             3. key positive
D. ArrayList size > 1



19

Pair-Wise Coverage

Pair-Wise Coverage (PWC) :  A value from each block for each 
characteristic must be combined with a value from every block for 
each of the other characteristics.

Assume we have three partitions with
the following blocks:

[A, B], [1, 2, 3], and [x, y]

Test requirements for PWC would be:

(A, 1, x)    (B, 1, y)
(A, 2, x)    (B, 2, y)
(A, 3, x)    (B, 3, y)
(A, 1, y)    (B, 1, x)
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t-Wise Coverage

Assume we have three partitions with
the following blocks:

[A, B], [1, 2, 3], and [x, y]

Test values for 3-wise coverage would 
be the same as ACoC, why?

t-Wise Coverage (TWC) : A value from each block for each group of 
t characteristics must be combined.
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Base Choice Coverage

Assume we have three partitions with 
the following blocks where A, 1, and x 
are base choices:

[A, B], [1, 2, 3], and [x, y]

Test values for BCC coverage would be:
(A, 1, x)                base test
(B, 1, x)
(A, 2, x)
(A, 3, x)
(A, 1, y)

Base Choice Coverage (BCC) :  A base choice block is chosen for each 
characteristic, and a base test is formed by using the base choice for 
each characteristic.  Subsequent tests are chosen by holding all but 
one base choice constant and using each non-base choice in each of 
the other characteristics.
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Base Choice Selection

► “base choice” essentially corresponds to the “default” choice for a block

► Base choice should be feasible (i.e., executable)

► Base choices usually take the “happy path”
❖ E.g., base choice block for “factor” is positive values

void multiples(int factor) {
    if (factor <= 0) {
        System.out.println(“Provide a positive value!");  
    } else {
        // Display consecutive positive factors until 100
        int value = factor;
        while (value <= 100) {
            System.out.print(value + " ");
            value = value + factor;
        }
    }
}
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Relevant Reads & Resources

►Recommended Textbooks:
❖ Introduction to Software Testing, 2nd Edition: ch5 and ch6
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