JOHNS HOPKINS

UNIVERSITY

EN.601422 / EN.601.622

Software Testing & Debugging

The material in this video is subject to the copyright of the owners of the material and is being provided for educational purposes under
rules of fair use for registered students in this course only. No additional copies of the copyrighted work may be made or distributed.

Plan for today

» Property-based Testing vs. Example-based Testing
» Jgwik Demo

Example-based Testing

import java.util.*;
import org.assertj.core.api.Assertions;
import org.junit.jupiter.api.Test;

class ListReverseTests {
@Test
void reverselList() {
List<Integer> aList — Arrays.asList(1, 2, 3);
Collections.reverse(aList);
Assertions.assertThat(alList).containsExactly(3, 2, 1);

}
}

But . ..

» How can | be confident that reverse also works with :
< different values?
< 5 elements?
< 5000 elements?

< an empty list?

< elements of different types?

“ EtcC.

L)

.0

o0

Example-based Testing

» We have fought the fear with:
< Input Space Partitioning
< Boundary Value Analysis
< Error Guessing
< Structural Coverage (i.e., Whitebox testing)
% EtcC.

Property-based Testing

» We can approach the question of correctness from a different
angle:

Under what preconditions and constraints (e.g., the range of
input parameters) should the functionality under test lead to
which postconditions (results of a computation)? And which
invariants should never be violated in the course?

Property

» What is a Property?

Combination of preconditions and qualities that are
expected to be present in the code under test.

Reverse Example

» The “reverse” function:

< For any given list of elements, applying reverse twice should
result in the original list.

< For any given list of elements, applying reverse must result in
a list of the same exact size.

< For any given list of elements, reverse of the list contains the
same exact set of elements

“ EtcC.

More Examples

» isPrime(int n):
< n must be a positive value if it is prime
< n must be an odd number if it is prime unless it is 2
< If nis negative, then it is not prime
“ Etc.

More Examples

» areAnagrams(String s1, String s2):
< If lengths of s1 and s2 are not equal, they cannot be anagrams
< s1 and s2 must contain the same exact set of characters if
they are anagrams
< If s1 and s2 are equal, they are anagrams

10

Property-based Testing (PBT)

» The two main steps in PBT:
1. finding general and desired properties for functions,
components, and whole programs.
2. finding concrete inputs to falsify those properties by
the randomized generation of test data.

11

Property-based Testing

» QuickCheck originally for Haskell

» Many other tools have been developed since then to support
various languages
< Jgwik for Java: https://iawik.net/docs/current/user-guide. html

12

https://jqwik.net/docs/current/user-guide.html

Demo of Jgwik

13

(@Forall

» Adding parameters and annotating them with @ForAll tells
jgwik that you want the framework to generate concrete random
input tests for you.

14

@ForAll Annotations

» Various annotations that can be used along with @Forall
¢ @ForAll @StringLength(min = 1, max = 10) String stringl

> @ForAll @AlphaChars String stringl

« @ForAll @IntRange (int min =0, int max = Integer. MAX_VALUE) int anint

- Etc.

o
%

>

L)

D)

>

L)

L)

>

L)

L)

15

Arbitrary<T>

» An interface that can be used to randomly choose a value from
among a set of possibilities

16

Parameter Provisioning with @Provide

@Property
boolean concatenatingStringWithint(@ForAll("shortStrings") String aShortString,
@ForAll("10 to 99") int aNumber) {

String concatenated = aShortString + aNumber;
return concatenated.length() > 2 && concatenated.length() < 11;

}

@Provide

Arbitrary<String> shortStrings() {
return Arbitraries.strings().withCharRange('a’, 'z’)
.0ofMinLength(1).ofMaxLength(8); }

@Provide("10 to 99")

Arbitrary<Integer> numbers() {
return Arbitraries.integers().between(10, 99);

}

17

Edge Cases

@Example

void printEdgeCases() {
System.out.printin(Arbitraries.integers().edgeCases());
System.out.printIn(Arbitraries.strings().withCharRange('a
System.out.pr|ntIn(Arbltrarles.floats().I|st().edgeCases()),

}

z').edgeCases());

EdgeCases[-2,-1,0, 2, 1,-2147483648, 2147483647]
Edgecases[ll n || " ||II]
EdgeCases|[][], [0.0], [1.0], [-1.0], [0.01], [-0.01], [-3.4028235E38], [3.4028235E38]]

18

Assumptions

@Property
boolean absOfNegativeNumbers(@ForAll @IntRange int a) {

return a == Str|ngNIntUtI|abS(a),
}

19

Some Ideas for Finding Properties

» Business rule:
< Example: For all customers with a yearly turnaround greater than X S we give an additional discount

of Y percent, if the invoice amount is larger than Z S.
» Inverse functions: applying the function first and the inverse function second should return the original
< Example: adding and subtracting a fixed amount must not change a numeric value.

» ldempotent functions: multiple application of an idempotent function should not change results.
< Example: Ordering a list multiple times, shouldn’t change it after the first time.

» Invariant functions: some properties of code must be true at all times.
< Example: sorting/mapping should never change the size of a collection

» Fuzzing: code should never explode, even if you feed it with lots of diverse and unforeseen input data.
< No exceptions occur, at least no unexpected ones.
There are no 5xx return codes for HTTP requests; maybe you even require 2xx status all the time.

All return values are valid.
Runtime is under an acceptable threshold.

R/
L X4

>

R/
*

7/
L X4

20

summary

» PBT:
“» Pros:
® gives us a hew perspective to look at testing
e relieves us from (some of) the burden of finding concrete
INnputs, corner cases and error guessing
< Ccons:
® not exactly testing the actual output
® brings a flair of indeterminism that random generation
brings into the game.

21

JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING

© The Johns Hopkins University 2018, All Rights Reserved.

