
1

Plan for today

►Mutation Testing

► PIT Tool



2

Mutation

► A small modification to a piece of code

► The use of word mutation is inspired by “biological mutation”

► Mutating is done by applying mutation operators

► Mutation Operator: a rule that specifies a valid syntactic modification 

► Mutant: The modified (i.e., mutated) code after applying a mutation 
operator



3

Example

// # original code
int index = 0;
while(true) {

index++;
// control flow branching
if (index == 10)

break;
}

// # mutated code (a mutant)
int index = 0;
while (true) {

index++;
// mutating
if (index <= 10)

break;
}



4

Mutation Testing

Output

Program

Mutant

Test data



5

Mutation Testing

► 1. Mutating a piece of code to generate a set of mutants

► 2. “Kill” all the (or as many as possible) mutants

Assume M is the set of all mutants for a given piece of code P. Test t is 
said to “kill” m  M if and only if the output of t on P is different from 
the output of t on m.



6

Mutation Testing



7

Example

// Program P
int min (int a, int b) {
   if (a < b) {
      return a;
   }
   return b;
}

// Mutant m
int min (int a, int b) {
   if (a > b) {
      return a;
   }
   return b;
}

Test t1: a = 10, b = 12 kills m
Test t2: a = 10, b = 10 does not kill m

 



8

Mutation Coverage

► Coverage in mutation equates to number of mutants killed

► MC level is also called mutation score, which is: 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑢𝑡𝑎𝑛𝑡𝑠 𝑘𝑖𝑙𝑙𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑢𝑡𝑎𝑛𝑡𝑠

Mutation Coverage (MC) : For each m  M, TR contains exactly one 
requirement, to kill m.



9

Mutation Operator Coverage (MOC)

Mutation Operator Coverage (MOC) : For each mutation operator, 
TR contains exactly one requirement, to create a mutant that is 
derived using the mutation operator.



10

Mutation Testing

►The number of test requirements for mutation depends on 
two things
❖ The syntax of the artifact being mutated
❖ The mutation operators

► Mutation testing is very difficult to apply by hand

► Mutation testing is very effective – considered the “gold standard” of 
testing

► Mutation testing is often used to evaluate other criteria



11

Mutation Testing

►Help the test engineer to strengthen the quality of the tests
❖ At least one test case in the test suite to kill mutant m

►Designing effective mutation operators is the key

►Mutation Operators are designed to:
❖ mimic typical programmer mistakes
❖ encourage the test engineer to write fault-revealing tests



12

Coupling Effect

►Mutation Testing Premise:

“Test data that distinguishes all programs differing from a   
correct one by only simple errors is so sensitive that it also   
implicitly distinguishes more complex errors.”



13

Mutation Testing

► If mutation operators are designed well, the resulting tests will be very 
powerful

► Different operators must be defined for different programming languages 
and different goals

► Testers can keep adding tests until all mutants have been killed
❖ Dead mutant : A test case has killed it
❖ Stillborn mutant : Syntactically illegal
❖ Trivial mutant : Almost every test can kill it
❖ Equivalent mutant : No test can kill it (same behavior as original)



14

Equivalent Mutant

►A Mutant that is functionally equivalent to the original code

► Thus, no test case can kill an equivalent mutant → infeasible test 
requirement

► In general, an undecidable problem to identify an equivalent 
mutant

// # original code
int index = 0;
while(true) {

index++;
// control flow branching
if (index == 10)

break;
}

// # an equivalent mutant
int index = 0;
while (true) {

index++;
// mutating
if (index >= 10)

break;
}



15

RIPR Model and Mutation Testing

• The RIPR model discussed earlier in class:

• Reachability : The test causes the faulty statement to be reached (in 
mutation – the mutated statement)

• Infection : The test causes the faulty statement to result in an incorrect 
state

• Propagation : The incorrect state propagates to incorrect output

• Revealability : The tester must observe part of the incorrect output

• The RIPR model leads to two variants of mutation coverage … 



16

Strong Mutation Coverage

Strong Mutation Coverage (SMC) : For each m  M, TR contains 
exactly one requirement, to strongly kill m.



17

Weak vs. Strong Kill

►1) Strongly Killing Mutants:
❖ Given a mutant m  M for a program P and a test t, t is said to strongly kill m if 

and only if the output of t on P is different from the output of t on m

►2) Weakly Killing Mutants:
❖ Given a mutant m  M that modifies a location l in a program P,  and a test t, 

t is said to weakly kill m if and only if the state of the execution of P on t is 
different from the state of the execution of m on t immediately after I 

● Weakly killing satisfies reachability and infection, but not propagation



18

Weak Mutation

• “Weak mutation” is so named because it is easier to kill mutants 
under this assumption
• Weak mutation also requires less analysis

• A few mutants can be killed under weak mutation but not under 
strong mutation (no propagation)

• “Studies have found that test sets that weakly kill all mutants 
also strongly kill most mutants”

Weak Mutation Coverage (WMC) : For each m  M, TR contains 
exactly one requirement, to weakly kill m.



19

Strong vs. Weak Mutation

int gcd(int x, int y) {
  int tmp;
  while(y != 0) {
    tmp = x % y;
    x = y;
    y = tmp;
  }
  return x;
}

int gcd(int x, int y) {
  int tmp;
  while(y != 0) {
    tmp = x * y;
    x = y;
    y = tmp;
  }
  return x;
}

weak mutation

strong mutation



20

Mutation Testing Process

Automated 
steps

Input 
test 

method

Prog Create 
mutants

Run T 
on P

Run T on 
mutants

Eliminate 
ineffective 

TCs

Generate 
test cases

Run 
equivalence 

detector

Threshold   
reached?

Set 
threshold

no

P (T) 
correct? yes

Fix 
P

no



21

Unit-Level Mutation Operators for Java

1. ABS –– Absolute Value Insertion

2. AOR –– Arithmetic Operator Replacement

3. ROR –– Relational Operator Replacement

4. LOR –– Logical Operator Replacement

5. SOR –– Shift Operator Replacement

6. BOR –– Bitwise Operator Replacement

7. ASR –– Assignment Operator Replacement

8. UOI –– Unary Operator Insertion

9. UOD –– Unary Operator Deletion

10. SVR –– Scalar Variable Replacement

11. BSR –– Bomb Statement Replacement



22

Absolute Value Insertion

Each arithmetic expression (and subexpression) is modified by the functions abs(), 
negAbs(), and failOnZero().

ABS –– Absolute Value Insertion:

Examples:
       a = m * (o + p);
∆1   a = abs (m * (o + p));
∆2   a = m * abs ((o + p));
∆3   a = failOnZero (m * (o + p));



23

Arithmetic Operator Replacement

Each occurrence of one of the arithmetic operators +, - , * ,／, and % is 
replaced by each of the other operators. In addition, each is replaced by the 
special mutation operators leftOp, and rightOp.

AOR –– Arithmetic Operator Replacement:

Examples:
       a = m * (o + p);
∆1   a = m + (o + p);
∆2   a = m * (o * p);
∆3   a = m leftOp (o + p);



24

Relational Operator Replacement

Each occurrence of one of the relational operators (<, ≤, >, ≥, =, ≠) is replaced 
by each of the other operators and by falseOp and trueOp.

ROR –– Relational Operator Replacement:

Examples:
       if (X <= Y)
∆1   if (X > Y)
∆2   if (X < Y)
∆3   if (X falseOp Y)  // always returns false



25

Logical Operator Replacement

Each occurrence of one of the logical operators (AND, OR, and NEGATION) is 
replaced by each of the other operators; in addition, each is replaced by 
falseOp, trueOp, leftOp, and rightOp.

LOR –– Logical Operator Replacement:

Examples:
       if (X <= Y && a > 0)
∆1   if (X <= Y || a > 0)
∆2   if (X <= Y leftOp a > 0) // returns result of left clause



26

Shift Operator Replacement

SOR –– Shift Operator Replacement:

Each occurrence of one of the shift operators <<, >>, and >>> is replaced by 
each of the other operators. In addition, each is replaced by the special 
mutation operator leftOp.

Examples:
       byte b = (byte) 16;
       b = b >> 2;
∆1   b = b << 2;
∆2   b = b leftOp 2; // result is b



27

Logical Operator Replacement

Each occurrence of one of the bitwise operators (bitwise AND, bitwise OR
, XOR, and bitwise NEGATION) is replaced by each of the other operators; in 
addition, each is replaced by leftOp and rightOp.

6. BOR –– Bitwise Operator Replacement:

Examples:
      int a = 60;    int b = 13;
      int c = a & b;
∆1  int c = a | b;
∆2  int c = a rightOp b; // result is b



28

Assignment Operator Replacement

Each occurrence of one of the assignment operators (=, +=, -=, *=, /=, %=, &=, 
|=, ^=, <<=, >>=) is replaced by each of the other operators.

ASR –– Assignment Operator Replacement:

Examples:
        a = m * (o + p);
∆1   a += m * (o + p);
∆2   a *= m * (o + p);



29

Unary Operator Insertion

UOI –– Unary Operator Insertion:

Each unary operator (arithmetic +, arithmetic -, logical !, bitwise ~) is inserted 
in front of each expression of the correct type.

Examples:
       a = m * (o + p);
∆1   a = m * -(o + p);
∆2   a = -(m * (o + p));



30

Unary Operator Deletion

Each unary operator (arithmetic +, arithmetic -, conditional !, logical~) is 
deleted.

UOD –– Unary Operator Deletion:

Examples:
       if !(X <= Y && !Z)
∆1   if (X <= Y && !Z)
∆2   if !(X <= Y && Z)



31

Scalar Variable Replacement

Each variable reference is replaced by every other variable of the appropriate 
type that is declared in the current scope.

SVR –– Scalar Variable Replacement:

Examples:
        a = m * (o + p);
∆ 1   a = o * (o + p);
∆ 2   a = m * (m + p);
∆ 3   a = m * (o + o);
∆ 4   p = m * (o + p);



32

Bomb Statement Replacement

BSR –– Bomb Statement Replacement:

Each statement is replaced by a special Bomb() function.

Example:
       a = m * (o + p);
∆1   Bomb() // Raises exception when reached



33

Questions

► Should more than one mutation operator be applied at the same 
time to produce a mutant?

► Should we try each and every possible mutation operator on any 
program?



34

Ways to Improve Mutation Testing Efficiency

► Parallelize

►Mutate Bytecode instead of Source Code
❖ no need to recompile

►Use Coverage
❖ measure coverage before doing mutation analysis

► Selective Mutation:
❖ only use a subset of mutation operators

► Strong vs. Weak Killing
❖ use weak killing



35

Use Coverage

int triangle(int a, int b, int c) {
  if (a <= 0 || b <= 0 || c <= 0) {
    return 4; // invalid
  }
  if (!(a + b > c && a + c > b && b + c > a)) {
    return 4; // invalid
  }
  if (a == b && b == c) {
    return 1; // equilateral
  }
  if (a == b || b == c || a == c) {
    return 2; // isosceles, not eq
  }
  return 3; // scalene
}

If we mutate the last if expression, then 
there is no point in executing all of the 
test cases against the mutants derived 
from the expression. Only some of the 
test cases will actually execute the 
mutation. If a test case does not 
execute the mutation, then there is no 
way it could kill it. Therefore, before 
mutation analysis we determine 
statement coverage for each of the test 
cases, and during mutation analysis only 
execute those test cases for a mutant 
that actually reach the mutation.

(0, 0, 0) 
(2, 2, 2) 
(1, 1, 3) 
(2, 2, 3) 
(2, 3, 4)
(4, 3, 2) 
(2, 3, 2)
(1, 1, 1)

only these test cases
execute mutants in 
this line



36

Mutation Testing

►Mutation Testing is expensive (lots of mutants):
❖ sample from the set of all mutants
❖ selectively use mutation operators that are (more) effective

*** If tests that are created to kill mutants produced by mutation 
operator 𝒐𝟏also kill mutants produced by mutation operator 𝒐𝟐, 
we say that 𝒐𝟏 is more effective than 𝒐𝟐 ***



37

Mutation Testing

► *** “Researchers have concluded that the collection of operators 
that insert unary operators and that modify unary and binary
operators are effective.” ***

Effective Mutation Operators
If tests that are created specifically to kill mutants created by a collection of 
mutation operators O = {o1, o2, …}  also kill mutants created by all 
remaining mutation operators with very high probability, then O defines an 
effective set of mutation operators



38

Integration Mutation Testing

► Integration Testing: Testing multiple units together
❖ Specifically, testing connections among units
❖ In Java, testing the way classes, packages, and modules are 

connected
● example: which methods of class A calls which methods of class 

B and vice versa.

► Integration testing is often based on the existing couplings – the 
explicit and implicit relationships among software components



39

Integration Mutation Testing

► Faults related to integrations often depend on a mismatch of 
assumptions
❖ Callee thought a list was sorted, caller did not
❖ Callee thought all fields were initialized, caller only initialized 

some of the fields
❖ Caller sent values in kilometers, callee thought they were miles
❖ etc.



40

Integration Mutation Operators

► In general, there are four kinds:
❖ change a calling method by modifying values that are sent  to a called 

method
❖ change a calling method by modifying the call
❖ change a called method by modifying values that enter and leave a 

method
● includes parameters as well as variables from higher scopes (class 

level, package, public, etc.)
❖ change a called method by modifying return statements from the 

method



41

Integration Parameter Variable Replacement

int a, b;
     
   callMethod (a);
 callMethod (b);

IPVR: Each parameter in a method call is replaced by each other 
variable in the scope of the method call that is of compatible type



42

IPEX – Integration Parameter Exchange

IPEX: Each parameter in a method call is exchanged with each parameter of 
compatible types in that method call

max (a, b);
 max (b, a);



43

IUOI –– Integration Unary Operator Insertion

IUOI: Each expression in a method call is modified by inserting all possible 
unary operators in front and behind it

callMethod (a);
 
 callMethod (a++);
 callMethod (++a);
 callMethod (a--);
 callMethod (--a);



44

Integration Method Call Deletion

IMCD: Each method call is deleted. If the method returns a value and it is 
used in an expression, the method call is replaced with an appropriate 
constant value

X = Max (a, b);
 X = new Integer (0);



45

Integration Return Expression Modification

IREM: Each expression in each return statement in a method is 
modified by applying the UOI and AOR operators

int myMethod () {
   return a + b;
  return ++a + b;
  return a – b;
}



46

Object-Oriented Mutation

► So far, we only mutated method bodies

►Class level mutation operators can be utilized too

public class test {
  // ..
  protected void do() {
    // ...
  }
}

public class test {
  // ..
  public void do() {
    // ...
  }
}



47

Object-Oriented Mutation Operators

AMC - Access Modifier Change 
HVD - Hiding Variable Deletion 
HVI - Hiding Variable Insertion 
OMD - Overriding Method Deletion 
OMM - Overridden Method Moving 
OMR - Overridden Method Rename 
SKR - Super Keyword Deletion 
PCD - Parent Constructor Deletion 
ATC - Actual Type Change 
DTC - Declared Type Change 

PTC - Parameter Type Change
RTC - Reference Type Change 
OMC - Overloading Method Change 
OMD - Overloading Method Deletion AOC 
- Argument Order Change 
ANC - Argument Number Change 
TKD - this Keyword Deletion 
SMV - Static Modifier Change 
VID - Variable Initialization Deletion 
DCD - Default Constructor 2 



48

Summary

► Mutation testing is:
❖ widely considered the strongest test criterion
❖ a high-end type of testing i.e., more effective, also more expensive
❖ expensive, i.e., by far the most test requirements
● generate mutants + recompilations + running all test cases of the test 

suite on each generated mutant
❖ Mutation Analysis is assessing the quality of a test suite
❖ Mutation Testing is used to improve the test suite quality by leveraging 

mutation analysis
❖ Can be applied to any syntax, hence aka syntax-based testing:
● have been applied to formal specification languages such as SVM
● have been applied to markup languages such as XML, HTML etc



49

Tool Support

► Java : muJava, PIT, Javalanche, etc.

► Javascript : Stryker Mutator, etc.

►C++: MuCPP, Mutate++, etc.

►Python: Cosmic Ray, mutmut, etc.

►Ruby: Heckle

►PHP: Infection PHP, Humbug

►C#: Nester, VisualMutator

► etc.



50

Relevant Reads and Resources

►Recommended Text:
❖ Introduction to Software Testing, 2nd Edition: ch9



© The Johns Hopkins University 2018, All Rights Reserved.


	Slide 1: Plan for today
	Slide 2: Mutation
	Slide 3: Example
	Slide 4: Mutation Testing
	Slide 5: Mutation Testing
	Slide 6: Mutation Testing
	Slide 7: Example
	Slide 8: Mutation Coverage
	Slide 9: Mutation Operator Coverage (MOC)
	Slide 10: Mutation Testing
	Slide 11: Mutation Testing
	Slide 12: Coupling Effect
	Slide 13: Mutation Testing
	Slide 14: Equivalent Mutant
	Slide 15: RIPR Model and Mutation Testing
	Slide 16: Strong Mutation Coverage
	Slide 17: Weak vs. Strong Kill
	Slide 18: Weak Mutation
	Slide 19: Strong vs. Weak Mutation
	Slide 20: Mutation Testing Process
	Slide 21: Unit-Level Mutation Operators for Java
	Slide 22: Absolute Value Insertion
	Slide 23: Arithmetic Operator Replacement
	Slide 24: Relational Operator Replacement
	Slide 25: Logical Operator Replacement
	Slide 26: Shift Operator Replacement
	Slide 27: Logical Operator Replacement
	Slide 28: Assignment Operator Replacement
	Slide 29: Unary Operator Insertion
	Slide 30: Unary Operator Deletion
	Slide 31: Scalar Variable Replacement
	Slide 32: Bomb Statement Replacement
	Slide 33: Questions
	Slide 34: Ways to Improve Mutation Testing Efficiency
	Slide 35: Use Coverage
	Slide 36: Mutation Testing
	Slide 37: Mutation Testing
	Slide 38: Integration Mutation Testing
	Slide 39: Integration Mutation Testing
	Slide 40: Integration Mutation Operators
	Slide 41: Integration Parameter Variable Replacement
	Slide 42: IPEX – Integration Parameter Exchange
	Slide 43: IUOI ––  Integration Unary Operator Insertion
	Slide 44: Integration Method Call Deletion
	Slide 45: Integration Return Expression Modification
	Slide 46: Object-Oriented Mutation
	Slide 47: Object-Oriented Mutation Operators
	Slide 48: Summary
	Slide 49: Tool Support
	Slide 50: Relevant Reads and Resources
	Slide 51

