JOHNS HOPKINS

UNIVERSITY

EN.601.422 / EN.601.622

Software Testing & Debugging

The material in this video is subject to the copyright of the owners of the material and is being provided for educational purposes under
rules of fair use for registered students in this course only. No additional copies of the copyrighted work may be made or distributed.

Testing vs. Debugging

» So far: Testing
< Look for inputs that cause failures
e Coverage criteria
® Test generation
e Test Oracle

» Program fails, now what? > Debugging
< Failures are typically discovered by

e Tests
® Real user

Six Stages of Debugging

1. That can’t happen.

2. That does not happen on my machine.
3. That should not happen.

4. Why does that happen?

5. Oh, | see.

6. How did that ever work?

Debugging Steps

» Debugging Steps:

1.

N o R WD

Reproduce the error, understand

Isolate and Minimize (shrink)— Simplification

Eveball the code, where/what could it be? Reason backwards
Devise and run an experiment to test your hypothesis

Repeat 3 and 4 until you understand what is wrong

Fix the Bug and Verify the Fix

Create a Regression Test

Search in Time and Space

Program state (i.e., variables)

Time /’/\ —

YANANAVAV AV AV EY,

X 5

The Fault!

Program state (i.e., variables)

Time /\

YANANAVAV AV AV aY
v
v

—
S

/

-~

—-_-—-

Debugging

» Debugging is a search in space (a given state of the program) and
time (all the states that the program goes through) to find and
resolve faults in a computer program
< Each single program state may involve a large number of

variables
< A program may pass through millions of states before failure
oCCurs

» This may seem like searching for a needle in endless rows of
haystack

777 -
¢ e

Finding the Origins

Program state (i.e., variables)

Time

Observing Transitions of States

Program state (i.e., variables)

Time /\

10

How Failures Come To Be

» A failure comes to be in three stages:
< The programmer makes a fault by creating a defect in the code
< The defect causes an infection (i.e., incorrect state or error)
< The infection causes a failure -- an externally visible error

» Not every defect results in an infection, and not every
infection/error results in a failure.

11

How To Debug Automatically

» A variety of tools and techniques are available to automate
debugging:
< Program Slicing
< Observing & Watching State
® logging
e using debugger tools
< Asserting Invariants
< Detecting Anomalies
< Isolating Cause-Effect Chains

12

Debugging Initiation

» Typically, debugging process is initiated when:
< An automated test case causes a failure
< A user experiences a failure and submits a “Bug Report”

13

Debugging is Reasoning

Experimentation

N controlled runs

14

How to Debug Automatically

» A variety of tools and techniques are available to automate
debugging:
< Program Slicing
< Observing & Watching State
e logging
e using debugger tools
< Asserting Invariants
< Detecting Anomalies
< Isolating Cause-Effect Chains

15

Debugging by Observation

» Determine facts based on what has happened in a concrete run
» Know what to observe and when to observe in a systematic way

» Debugging by Observation techniques:
< Logging
< Interactive debugging
< Postmortem debugging

16

Observation Principles

» Proceed systematically: Rather than observing values at random,
search scientifically = develop hypotheses

» Know what to observe and when to observe: program run is a long
succession of huge program states (i.e., large number of variables),
so it is impossible/impractical to observer everything all the time

» Do not interfere: Whatever you observe should be the effect of the
original program run rather than an effect of your observation

17

Debugging by Observation

» How can we observe the software state:

Logging the execution

18

Logging the Execution

» General idea: Insert output statements at specific places in the
program

» Also known as printin debugging

public void quickSort(int arr[],
int low, int high) {
if (low < high) {

public void quickSort(int arr[],
int low, int high) {
if (low < high) {

/* pi is partitioning index,
arr[pi] is now at right place */
int pi = partition(arr, low, high);

quickSort(arr, low, pi - 1);
quickSort(arr, pi + 1, high);

/* pi is partitioning index,
arr[pi] is now at right place */
int pi = partition(arr, low, high);
System.out.println("pi is: " + pi);
quickSort(arr, low, pi - 1);
quickSort(arr, pi + 1, high);

19

“printIn” Debugging Issues

» Cluttered code: logging statements serve no purpose other than debugging

» Cluttered output: logging statements can produce a large amount of output which
gets interleaved with ordinary output
< designate a separate channel for logging (e.g., error channel, a separate logfile etc.)

» Slowdown: huge amount of logging statements can slow down the program

» Loss of Data: for performance reasons, outputs are buffered before being outputted
< if the program crashes, output data will be lost
< do not buffer or buffer less frequently = Slowdown

20

Apache Log4j 2

» A full-fledged logging framework
» Offers more functionality compared to java.util.logging
» Many open-source applications utilize log4j

https://logging.apache.org/log4j/2.x/

21

https://logging.apache.org/log4j/2.x/

Log4j Architecture

class Log4j Classes /

LoggerContext !,

- name: String

- parent: LoggerConfig

StrLookup

Filter

*|- name: String

5

Filter

22

Log Levels

All < Trace < Debug < Info < Warn < Error < Fatal < Off

Event Level LoggerConfig Level
TRACE DEBUG INFO WARN ERROR FATAL OFF

ALL YES YES YES YES YES YES NO
TRACE YES NO NO NO NO NO NO
DEBUG YES YES NO NO NO NO NO
INFO YES YES YES NO NO NO NO
WARN YES YES YES YES NO NO NO
ERROR YES YES YES YES YES NO NO
FATAL YES YES YES YES YES YES NO
OFF NO NO NO NO NO NO NO

23

SLF4)

» Simple Logging Facade for Java (abbreviated SLF4)):
< acts as a facade for different logging frameworks e.g.,
java.util.logging, logback, Log4j 2).
< The underlying logging framework can be plugged in at run-time

24

Simplifying

» Once one has reproduced a problem, one must find out what’s
relevant:
< Does the problem really depend on 10,000 lines of input?
< Does the failure really require this exact schedule?
<+ Do we need this sequence of calls?

25

Why Simplify

» An airplane crashes:
<+ Remove passenger seats, does it still crash?
<+ Remove coffee machine, does it still crash?
<+ Remove the engines, it does not move

4

engines are relevant!

26

Simplifying and Circumstances

» For every circumstance of the problem, check whether it is relevant
for the problem to occur.

» If it is not, remove it from the problem report or the test case in
question.

» Any aspect that may influence a problem is a circumstance:
< Aspects of the problem environment
< Individual steps of the problem history

27

Simplifying by Experimentation

» By experimentation, one finds out whether a circumstance is
relevant or not:

» Omit the circumstance and try to reproduce the problem.
» The circumstance is relevant iff the problem no longer occurs.

28

Mozilla Gecko and a Reported Bug

» Gecko: Mozilla HTML layout engine
» In 1999, there were 370 open problem reports
» Loading an 896-lines HTML crashed the browser

» Much better to work with the smallest possible HTML input file that
contains the “failure cause”

29

Why Simplify

» Ease of communication:
< A simplified test case is easier to communicate.

» Easier debugging:
< Smaller test cases result in smaller states and shorter executions.

» ldentify duplicates:
< Simplified test cases subsume several duplicates.

30

<td align=left valign=top>

<SELECT NAME="op_sys" MULTIPLE SIZE=7>

<OPTION VALUE="AII">AII<OPTION VALUE="Windows 3.1">Windows 3.1<OPTION VALUE="Windows 95">Windows 95-
98<OPTION VALUE="Windows ME">Windows ME<OPTION VALUE="Windows 2000">Windows 2000<OPTION VALUE="
VALUE="Mac System 7">Mac System 7<OPTION VALUE="Mac System 7.5">Mac System 7.5<OPTION VALUE="Mac Syste
VALUE="Mac System 8.0">Mac System 8.0<OPTION VALUE="Mac System 8.5">Mac System 8.5<OPTION VALUE="Mac ¢
VALUE="Mac System 9.x">Mac System 9.x<OPTION VALUE="MacOS X">MacOS X<OPTION VALUE="Linux">Linux<OPTIC
VALUE="FreeBSD">FreeBSD<OPTION VALUE="NetBSD">NetBSD<OPTION VALUE="OpenBSD">0penBSD<OPTION VALUI
VALUE="BeOS">BeOS<OPTION VALUE="HP-UX">HP-UX<OP VALUE="IRIX">IRIX<OPTION VALUE="Neutrino">Neutt
VALUE= "OpenVI\/IS">OpenVIVIS r a"mZQ/‘ZEQPmﬂ ALUE="0OSF/1">0SF/1<OPTION VALUE="Solari
VALUE="SunOS">SunOS<OPTION VAL "other">other</SELECT>

</td>

<td align=left valign=top>

<SELECT NAME="

<OPTION VALUE=)PTION VALUE='

. What’s relevant in here?

<td align=left vali;

<SELECT NAME="0Ug Scveiity WIULIIrLL SiZL—7~

<OPTION VALUE="blocker">blocker<OPTION VALUE="critical">critical<kOPTION VALUE="major">major<OPTION VALUE:
VALUE="minor">minor<OPTION VALUE="trivial">trivial<kOPTION VALUE="enhancement">enhancement</SELECT>

The Gecko BugAThon

» New problem reports came in way faster than the Mozilla developers
could possibly simplify them or even look at them

» Eric Krock, the Mozilla product manager, came up with a brilliant idea
<+ Download the Web page to your machine.
< Using a text editor, start removing HTML from the page. Every few
minutes, make sure it still reproduces the bug.
< Code not required to reproduce the bug can be safely removed.
< When you’ve cut away as much as you can, you’re done.

32

Binary Search

» Proceed by binary search. Throw away half the input and see if the
output is still wrong.

» If not, go back to the previous state and discard the other half of

L e
W X sasines
M X e
SO X e

s W N e

12: <SELECT_NAME="priority” MULTIPLE_SIZE=7>) 40 characters 3

Simplified Input

<SELECT NAME="priority" MULTIPLE SIZE=7>

» Simplified from 896 lines to one single line
» Required 12 tests only

34

» Ease of communication:
< All one needs is “<SELECT> tag causes a crash”

» Easier debugging:
<+ We can directly focus on the piece of code that renders <SELECT>

» ldentify duplicates:
<+ Check other test cases whether they’re <SELECT>-related, too.

35

Automated Simplification

» Manual simplification is slow & boring.
» We have machines for mechanical tasks.
» Basic idea:

< We set up an automated test that checks whether the failure
occurs or not e.g., Mozilla crashes or not

< We implement a strategy that realizes the binary search

36

Automated Test

» Launch Mozilla

» Replay (previously recorded) steps from problem report
» Wait to see whether

< Mozilla crashes (= the test fails)

< Mozilla still runs (= the test passes)

» If neither happens, the test is unresolved

37

Binary Search

» What do we do if both halves pass?
< Increase granularity, i.e., break the input into smaller pieces

38

Example

public static int checkSum(int[] a)

» is supposed to compute the checksum of an integer array

o_n”n

» gives wrong result, whenever “a” contains two identical
consecutive numbers, but we don’t know that yet

» we have a failed test case, e.g., from protocol transmission:
+{1,3,5,3,9,17,44,3,6,1, 1,0, 44, 1, 44, 0}

39

Another Example (N is number of chunks)

4 |1 | 44 | O

N=4 Increase granularity

, SSSXx xS X

0

Another Example - Continued

N=4 Increase granularity

input size

v

v

X

N =3 Adjust granularity to 6| 1| 1 X
v

v

X

ddmin Algorithm
(- Let c be a failing input configuration (sequence of individual inputs) \

- test(c) runs atest on ¢ with possible outcome PASS or FAIL

- nisthe number of chunks to split ¢ into (initially n = 2). We will remove one chunk at a

time and test the remaining input.
ddMin (c, n)
1. ITf |c|] = 1 return c

42

ddmin Algorithm
(- Let c be a failing input configuration (sequence of individual inputs) \

test (c) runs a test on ¢ with possible outcome PASS or FAIL

n is the number of chunks to split ¢ into (initially n = 2). We will remove one chunk at
\ the time and test the remaining input. y

ddMin (c, n)

1. If |c|] = 1 return c

Otherwise, systematically remove one chunk c; at the time. Test the remaining
inputc\c; :

2. If there exist some ¢; such that test(e \ ¢;) = FAIL
return ddMin(c \ ¢; , max(n-1, 2))

43

ddmin Algorithm
(- Let c be a failing input configuration (sequence of individual inputs) \

test (c) runs a test on ¢ with possible outcome PASS or FAIL

n is the number of chunks to split ¢ into (initially n = 2). We will remove one chunk at
\ the time and test the remaining input. y

ddMin (c, n)

1. If |c|] = 1 return c

Otherwise, systematically remove one chunk c; at the time. Test the remaining
inputc\c; :

2. If there exist some ¢; such that test(e \ ¢;) = FAIL
return ddMin(c \ ¢; , max(n-1, 2))

3. Else, if n < |c| return ddMin(c, min(2n, |c|))

44

ddmin Algorithm

(- Let c be a failing input configuration (sequence of individual inputs) \

« test(c) runs atest on ¢ with possible outcome PASS or FAIL

- nisthe number of chunks to split ¢ into (initially n = 2). We will remove one chunk at

the time and test the remaining input.
ddMin (c, n)

1. ITf: |c|] = 1 return c

// Otherwise, systematically remove one chunk ¢; at the
time. Test the remaining input ¢ \ ¢;:

2. If there exist some ¢; such that test(e \ ¢;) = FAIL
return ddMin(c \ ¢; , max(n-1, 2))

3. Else if: n < |c|
return ddMin(c, min(2n, |c|))

4. Else: // (can’t split into smaller chunks)
return c 45

Delta Debugging

» The technique is an instance of delta debugging:
< An approach to isolate failure causes by narrowing down differences
(deltas) between runs

» Delta Debugging can be applied to various types of inputs such as:
< failure-inducing program input, e.g., HTML page
< failure-inducing user interactions e.g., the key/mouse strokes that
make a program crash
< failure-inducing changes to the program code, e.g., after a failing
regression test
< etc.

46

Delta Debugging

Delta Debugging gives an alternate mindset to the debugging problem. Normally,
when something does not work as expected (i.e., you have a “failure”), you would
naturally think: “hmmm, what’'s wrong here?”. Delta Debugging takes an alternate
approach: “what could NOT be wrong here?” In other words, “what is irrelevant
here?” so that | can exclude those parts and put them aside to simplify things.

47

Delta Debugging

After 82 tests, ddmin
has simplified the user
interactions to 3 events:

1. Press P while holding
Alt

2. Pressthe left
mouse button on
the Print button

3. Release the 1left
mouse button

User Interactions

L tiiiiBiliiiiBiA

' MN events removed —— -

Tests Executed

48

Relevant Reads and Resources

» Recommended Texts:
< “Why Programs Fail”: ch1 and ch2

» https://logging.apache.org/logdj/
» https://www.slf4j.org/

» Recommended Texts
< “Why Programs Fail”: ch5
» https://www-archive.mozilla.org/newlayout/bugathon.html

» TDA567/DIT082 Chalmers University of Technology
http://www.cse.chalmers.se/edu/year/2018/course/TDA567/

49

https://logging.apache.org/log4j/
https://www.slf4j.org/
https://www-archive.mozilla.org/newlayout/bugathon.html
http://www.cse.chalmers.se/edu/year/2018/course/TDA567/

	Slide 1
	Slide 2: Testing vs. Debugging
	Slide 3: Six Stages of Debugging
	Slide 4: Debugging Steps
	Slide 5: Search in Time and Space
	Slide 6: The Fault!
	Slide 7: Debugging
	Slide 8: Program State Can Be Huge
	Slide 9: Finding the Origins
	Slide 10: Observing Transitions of States
	Slide 11: How Failures Come To Be
	Slide 12: How To Debug Automatically
	Slide 13: Debugging Initiation
	Slide 14: Debugging is Reasoning
	Slide 15: How to Debug Automatically
	Slide 16: Debugging by Observation
	Slide 17: Observation Principles
	Slide 18: Debugging by Observation
	Slide 19: Logging the Execution
	Slide 20: “println” Debugging Issues
	Slide 21: Apache Log4j 2
	Slide 22: Log4j Architecture
	Slide 23: Log Levels
	Slide 24: SLF4J
	Slide 25: Simplifying
	Slide 26: Why Simplify
	Slide 27: Simplifying and Circumstances
	Slide 28: Simplifying by Experimentation
	Slide 29: Mozilla Gecko and a Reported Bug
	Slide 30: Why Simplify
	Slide 31: bugzilla.mozilla.org
	Slide 32: The Gecko BugAThon
	Slide 33: Binary Search
	Slide 34: Simplified Input
	Slide 35: Benefits
	Slide 36: Automated Simplification
	Slide 37: Automated Test
	Slide 38: Binary Search
	Slide 39: Example
	Slide 40: Another Example (N is number of chunks)
	Slide 41: Another Example - Continued
	Slide 42: ddmin Algorithm
	Slide 43: ddmin Algorithm
	Slide 44: ddmin Algorithm
	Slide 45: ddmin Algorithm
	Slide 46: Delta Debugging
	Slide 47: Delta Debugging
	Slide 48: Delta Debugging
	Slide 49: Relevant Reads and Resources

